Autor: |
Tognacca RS; Departamento De Fisiología, Biología Molecular Y Celular, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires , Buenos Aires, Argentina.; Instituto De Fisiología, Biología Molecular Y Neurociencias (IFIBYNE), CONICET-Universidad De Buenos Aires , Buenos Aires, Argentina., Kubaczka MG; Departamento De Fisiología, Biología Molecular Y Celular, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires , Buenos Aires, Argentina.; Instituto De Fisiología, Biología Molecular Y Neurociencias (IFIBYNE), CONICET-Universidad De Buenos Aires , Buenos Aires, Argentina., Servi L; Departamento De Fisiología, Biología Molecular Y Celular, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires , Buenos Aires, Argentina.; Instituto De Fisiología, Biología Molecular Y Neurociencias (IFIBYNE), CONICET-Universidad De Buenos Aires , Buenos Aires, Argentina., Rodríguez FS; Departamento De Fisiología, Biología Molecular Y Celular, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires , Buenos Aires, Argentina.; Instituto De Fisiología, Biología Molecular Y Neurociencias (IFIBYNE), CONICET-Universidad De Buenos Aires , Buenos Aires, Argentina.; Departamento De Biodiversidad Y Biología Experimental, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires , Buenos Aires, Argentina., Godoy Herz MA; Departamento De Fisiología, Biología Molecular Y Celular, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires , Buenos Aires, Argentina.; Instituto De Fisiología, Biología Molecular Y Neurociencias (IFIBYNE), CONICET-Universidad De Buenos Aires , Buenos Aires, Argentina., Petrillo E; Departamento De Fisiología, Biología Molecular Y Celular, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos Aires , Buenos Aires, Argentina.; Instituto De Fisiología, Biología Molecular Y Neurociencias (IFIBYNE), CONICET-Universidad De Buenos Aires , Buenos Aires, Argentina. |
Abstrakt: |
Plants have a high level of developmental plasticity that allows them to respond and adapt to changes in the environment. Among the environmental cues, light controls almost every aspect of A. thaliana's life cycle, including seed maturation, seed germination, seedling de-etiolation and flowering time. Light signals induce massive reprogramming of gene expression, producing changes in RNA polymerase II transcription, alternative splicing, and chromatin state. Since splicing reactions occur mainly while transcription takes place, the regulation of RNAPII transcription has repercussions in the splicing outcomes. This cotranscriptional nature allows a functional coupling between transcription and splicing, in which properties of the splicing reactions are affected by the transcriptional process. Chromatin landscapes influence both transcription and splicing. In this review, we highlight, summarize and discuss recent progress in the field to gain a comprehensive insight on the cross-regulation between chromatin state, RNAPII transcription and splicing decisions in plants, with a special focus on light-triggered responses. We also introduce several examples of transcription and splicing factors that could be acting as coupling factors in plants. Unravelling how these connected regulatory networks operate, can help in the design of better crops with higher productivity and tolerance. |