Single Nucleotide Polymorphism Charting of P. patens Reveals Accumulation of Somatic Mutations During in vitro Culture on the Scale of Natural Variation by Selfing.
Autor: | Haas FB; Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany., Fernandez-Pozo N; Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany., Meyberg R; Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany., Perroud PF; Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany., Göttig M; Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany., Stingl N; Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany., Saint-Marcoux D; Department of Plant Sciences, University of Oxford, Oxford, United Kingdom.; Université de Lyon, UJM-Saint-Etienne, CNRS, Laboratoire BVpam - FRE 3727, Saint-Étienne, France., Langdale JA; Department of Plant Sciences, University of Oxford, Oxford, United Kingdom., Rensing SA; Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany.; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.; SYNMIKRO Center for Synthetic Microbiology, University of Marburg, Marburg, Germany. |
---|---|
Jazyk: | angličtina |
Zdroj: | Frontiers in plant science [Front Plant Sci] 2020 Jul 07; Vol. 11, pp. 813. Date of Electronic Publication: 2020 Jul 07 (Print Publication: 2020). |
DOI: | 10.3389/fpls.2020.00813 |
Abstrakt: | Introduction: Physcomitrium patens (Hedw.) Mitten (previously known as Physcomitrella patens ) was collected by H.L.K. Whitehouse in Gransden Wood (Huntingdonshire, United Kingdom) in 1962 and distributed across the globe starting in 1974. Hence, the Gransden accession has been cultured in vitro in laboratories for half a century. Today, there are more than 13 different pedigrees derived from the original accession. Additionally, accessions from other sites worldwide were collected during the last decades. Methods and Results: In this study, 250 high throughput RNA sequencing (RNA-seq) samples and 25 gDNA samples were used to detect single nucleotide polymorphisms (SNPs). Analyses were performed using five different P. patens accessions and 13 different Gransden pedigrees. SNPs were overlaid with metadata and known phenotypic variations. Unique SNPs defining Gransden pedigrees and accessions were identified and experimentally confirmed. They can be successfully employed for PCR-based identification. Conclusion: We show independent mutations in different Gransden laboratory pedigrees, demonstrating that somatic mutations occur and accumulate during in vitro culture. The frequency of such mutations is similar to those observed in naturally occurring populations. We present evidence that vegetative propagation leads to accumulation of deleterious mutations, and that sexual reproduction purges those. Unique SNP sets for five different P. patens accessions were isolated and can be used to determine individual accessions as well as Gransden pedigrees. Based on that, laboratory methods to easily determine P. patens accessions and Gransden pedigrees are presented. (Copyright © 2020 Haas, Fernandez-Pozo, Meyberg, Perroud, Göttig, Stingl, Saint-Marcoux, Langdale and Rensing.) |
Databáze: | MEDLINE |
Externí odkaz: |