Computational aided acetaminophen - phthalic acid molecularly imprinted polymer design for analytical determination of known and new developed recreational drugs.

Autor: Paredes-Ramos M; Laboratory of Chemistry, Technological Research Center (CIT), Universidade da Coruña (UDC), Campus de Esteiro s/n, 15403, Ferrol - A Coruña, Spain; METMED Research Group, Physical Chemistry Department, Universidade da Coruña (UDC), Campus da Zapateira s/n, 15071, A Coruña, Spain. Electronic address: maria.paredes@udc.es., Sabín-López A; Laboratory of Chemistry, Technological Research Center (CIT), Universidade da Coruña (UDC), Campus de Esteiro s/n, 15403, Ferrol - A Coruña, Spain; METMED Research Group, Physical Chemistry Department, Universidade da Coruña (UDC), Campus da Zapateira s/n, 15071, A Coruña, Spain., Peña-García J; Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica San Antonio de Murcia (UCAM), Campus de Los Jerónimos s/n, 30107, Murcia, Spain., Pérez-Sánchez H; Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica San Antonio de Murcia (UCAM), Campus de Los Jerónimos s/n, 30107, Murcia, Spain., López-Vilariño JM; Laboratory of Chemistry, Technological Research Center (CIT), Universidade da Coruña (UDC), Campus de Esteiro s/n, 15403, Ferrol - A Coruña, Spain; Hijos de Rivera S.A.U., C/ José María Rivera Corral n°6, 15008, A Coruña, Spain., Sastre de Vicente ME; METMED Research Group, Physical Chemistry Department, Universidade da Coruña (UDC), Campus da Zapateira s/n, 15071, A Coruña, Spain.
Jazyk: angličtina
Zdroj: Journal of molecular graphics & modelling [J Mol Graph Model] 2020 Nov; Vol. 100, pp. 107627. Date of Electronic Publication: 2020 Apr 25.
DOI: 10.1016/j.jmgm.2020.107627
Abstrakt: In recent times, abuse drug consumption rates have been increasing. In addition, authorities have detected a trend in the development of new substances expressly created to avoid legislation. These novel psychoactive substances (NPS) are non-registered formulations, closely chemically related to outlawed ones to maintain the same psychotropic effects while circumventing legal restrictions. This issue arises enormous social, sanitary, and road safety problems since there is no way to detect nor quantify these non-registered substances. The aim of this work is the development of a high selective material able to pre-concentrate and detect NPS. On that account, molecularly imprinted polymers (MIPs) designed with an imprinted cavity that matches the cathinones structural shape were proposed to detect both conventional and new cathinone derived recreational drugs. The increasing number of illicit drug modifications that is being reported requires developing a receptor valid for not only known molecules but also for incoming ones; thus, a virtual procedure must be carried out to take a step forward towards future modifications. Accordingly, a computational MIP design is proposed as the most appropriated method to effectively design this receptor. By means of molecular dynamics and molecular docking, several combinations are studied regarding their pre-polymerization complex stability but also their rebinding capacity against the proposed analytes. Hence, a phthalic acid - acetaminophen MIP is selected as the most well-suited receptor, valid for current and forthcoming cathinone recreational drugs.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2020 Elsevier Inc. All rights reserved.)
Databáze: MEDLINE