Internal Conversion and Intersystem Crossing with the Exact Factorization.

Autor: Talotta F; Institut de Chimie Physique, UMR8000, CNRS, Université Paris-Saclay, 91405 Orsay, France.; Institut des Sciences Moléculaires d'Orsay, CNRS, Université Paris-Saclay, 91405 Orsay, France., Morisset S; Institut des Sciences Moléculaires d'Orsay, CNRS, Université Paris-Saclay, 91405 Orsay, France., Rougeau N; Institut des Sciences Moléculaires d'Orsay, CNRS, Université Paris-Saclay, 91405 Orsay, France., Lauvergnat D; Institut de Chimie Physique, UMR8000, CNRS, Université Paris-Saclay, 91405 Orsay, France., Agostini F; Institut de Chimie Physique, UMR8000, CNRS, Université Paris-Saclay, 91405 Orsay, France.
Jazyk: angličtina
Zdroj: Journal of chemical theory and computation [J Chem Theory Comput] 2020 Aug 11; Vol. 16 (8), pp. 4833-4848. Date of Electronic Publication: 2020 Jul 30.
DOI: 10.1021/acs.jctc.0c00493
Abstrakt: We present a detailed derivation of the generalized coupled-trajectory mixed quantum-classical (G-CT-MQC) algorithm based on the exact-factorization equations. The ultimate goal is to propose an algorithm that can be employed for molecular dynamics simulations of nonradiative phenomena, as the spin-allowed internal conversions and the spin-forbidden intersystem crossings. Internal conversions are nonadiabatic processes driven by the kinetic coupling between electronic states, whereas intersystem crossings are mediated by the spin-orbit coupling. In this paper, we discuss computational issues related to the suitable representation for electronic dynamics and the different natures of kinetic and spin-orbit coupling. Numerical studies on model systems allow us to test the performance of the G-CT-MQC algorithm in different situations.
Databáze: MEDLINE