Tetanus insensitive VAMP2 differentially restores synaptic and dense core vesicle fusion in tetanus neurotoxin treated neurons.

Autor: Hoogstraaten RI; Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit (VU) Amsterdam and University Medical Center Amsterdam, de Boelelaan 1087, 1018 HV, Amsterdam, The Netherlands., van Keimpema L; Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit (VU) Amsterdam and University Medical Center Amsterdam, de Boelelaan 1087, 1018 HV, Amsterdam, The Netherlands.; Sylics (Synaptologics BV), PO Box 71033, 1008 BA, Amsterdam, The Netherlands., Toonen RF; Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit (VU) Amsterdam and University Medical Center Amsterdam, de Boelelaan 1087, 1018 HV, Amsterdam, The Netherlands. ruud.toonen@cncr.vu.nl., Verhage M; Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit (VU) Amsterdam and University Medical Center Amsterdam, de Boelelaan 1087, 1018 HV, Amsterdam, The Netherlands. matthijs@cncr.vu.nl.; Clinical Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit (VU) Amsterdam and University Medical Center Amsterdam, de Boelelaan 1087, 1018 HV, Amsterdam, The Netherlands. matthijs@cncr.vu.nl.
Jazyk: angličtina
Zdroj: Scientific reports [Sci Rep] 2020 Jul 02; Vol. 10 (1), pp. 10913. Date of Electronic Publication: 2020 Jul 02.
DOI: 10.1038/s41598-020-67988-2
Abstrakt: The SNARE proteins involved in the secretion of neuromodulators from dense core vesicles (DCVs) in mammalian neurons are still poorly characterized. Here we use tetanus neurotoxin (TeNT) light chain, which cleaves VAMP1, 2 and 3, to study DCV fusion in hippocampal neurons and compare the effects on DCV fusion to those on synaptic vesicle (SV) fusion. Both DCV and SV fusion were abolished upon TeNT expression. Expression of tetanus insensitive (TI)-VAMP2 restored SV fusion in the presence of TeNT, but not DCV fusion. Expression of TI-VAMP1 or TI-VAMP3 also failed to restore DCV fusion. Co-transport assays revealed that both TI-VAMP1 and TI-VAMP2 are targeted to DCVs and travel together with DCVs in neurons. Furthermore, expression of the TeNT-cleaved VAMP2 fragment or a protease defective TeNT in wild type neurons did not affect DCV fusion and therefore cannot explain the lack of rescue of DCV fusion by TI-VAMP2. Finally, to test if two different VAMPs might both be required in the DCV secretory pathway, Vamp1 null mutants were tested. However, VAMP1 deficiency did not reduce DCV fusion. In conclusion, TeNT treatment combined with TI-VAMP2 expression differentially affects the two main regulated secretory pathways: while SV fusion is normal, DCV fusion is absent.
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje