Regulation of cellular senescence by eukaryotic members of the FAH superfamily - A role in calcium homeostasis?

Autor: Weiss AKH; University of Innsbruck, Research Institute for Biomedical Aging Research, Rennweg 10, A-6020, Innsbruck, Austria; University of Innsbruck, Center for Molecular Biosciences Innsbruck (CMBI), Austria. Electronic address: alexander.weiss@uibk.ac.at., Albertini E; University of Innsbruck, Research Institute for Biomedical Aging Research, Rennweg 10, A-6020, Innsbruck, Austria; University of Innsbruck, Center for Molecular Biosciences Innsbruck (CMBI), Austria., Holzknecht M; University of Innsbruck, Research Institute for Biomedical Aging Research, Rennweg 10, A-6020, Innsbruck, Austria; University of Innsbruck, Center for Molecular Biosciences Innsbruck (CMBI), Austria., Cappuccio E; University of Innsbruck, Research Institute for Biomedical Aging Research, Rennweg 10, A-6020, Innsbruck, Austria; University of Innsbruck, Center for Molecular Biosciences Innsbruck (CMBI), Austria., Dorigatti I; University of Innsbruck, Research Institute for Biomedical Aging Research, Rennweg 10, A-6020, Innsbruck, Austria; University of Innsbruck, Center for Molecular Biosciences Innsbruck (CMBI), Austria., Krahbichler A; University of Innsbruck, Research Institute for Biomedical Aging Research, Rennweg 10, A-6020, Innsbruck, Austria; University of Innsbruck, Center for Molecular Biosciences Innsbruck (CMBI), Austria., Damisch E; University of Innsbruck, Research Institute for Biomedical Aging Research, Rennweg 10, A-6020, Innsbruck, Austria; University of Innsbruck, Center for Molecular Biosciences Innsbruck (CMBI), Austria., Gstach H; University of Vienna, UZ2 E349, Department of Pharmaceutical Chemistry, Faculty of Life Sciences, Althanstrasse 14, 1090, Vienna, Austria., Jansen-Dürr P; University of Innsbruck, Research Institute for Biomedical Aging Research, Rennweg 10, A-6020, Innsbruck, Austria; University of Innsbruck, Center for Molecular Biosciences Innsbruck (CMBI), Austria.
Jazyk: angličtina
Zdroj: Mechanisms of ageing and development [Mech Ageing Dev] 2020 Sep; Vol. 190, pp. 111284. Date of Electronic Publication: 2020 Jun 20.
DOI: 10.1016/j.mad.2020.111284
Abstrakt: Fumarylacetoacetate hydrolase (FAH) superfamily members are commonly expressed in the prokaryotic kingdom, where they take part in the committing steps of degradation pathways of complex carbon sources. Besides FAH itself, the only described FAH superfamily members in the eukaryotic kingdom are fumarylacetoacetate hydrolase domain containing proteins (FAHD) 1 and 2, that have been a focus of recent work in aging research. Here, we provide a review of current knowledge on FAHD proteins. Of those, FAHD1 has recently been described as a regulator of mitochondrial function and senescence, in the context of mitochondrial dysfunction associated senescence (MiDAS). This work further describes data based on bioinformatics analysis, 3D structure comparison and sequence alignment, that suggests a putative role of FAHD proteins as calcium binding proteins.
(Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved.)
Databáze: MEDLINE