Rapid Photoswitching of Low Molecular Weight Arylazoisoxazole Adhesives.

Autor: Kortekaas L; Center for Soft Nanoscience and Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, 48149 Münster, Germany., Simke J; Center for Soft Nanoscience and Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, 48149 Münster, Germany., Kurka DW; Center for Soft Nanoscience and Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, 48149 Münster, Germany., Ravoo BJ; Center for Soft Nanoscience and Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Busso-Peus-Straße 10, 48149 Münster, Germany.
Jazyk: angličtina
Zdroj: ACS applied materials & interfaces [ACS Appl Mater Interfaces] 2020 Jul 15; Vol. 12 (28), pp. 32054-32060. Date of Electronic Publication: 2020 Jul 02.
DOI: 10.1021/acsami.0c03767
Abstrakt: Adhesion is one of the most ubiquitous practical applications at surfaces. With today's society calling increasingly for more reusable and "green" alternatives, the demand for readily reversible adhesives has triggered many studies into this field, in particular by incorporating molecular photoswitches into composite materials. Responsive polymers can act as reversible adhesives, but their employment brings about synthetic drawbacks and challenges in reproducibility and reusability. Here, our results demonstrate that even a low molecular weight photoswitch can serve as an on-demand adhesive when the intermolecular interactions are sufficiently strong. We show that readily accessible arylazoisoxazoles display a fast photoreversible solid-to-liquid phase transition and perform as excellent photoreversible adhesives, with a remarkable durability over 10 immediate reuse cycles without a loss in adhesive strength or an increase in the unprecedented response time. Furthermore, the versatility of photoreversible adhesion is shown at various surfaces ranging from polymeric materials to metals, demonstrating a wide field of potential application.
Databáze: MEDLINE