N 4 -benzyl-N 2 -phenylquinazoline-2,4-diamine compound presents antibacterial and antibiofilm effect against Staphylococcus aureus and Staphylococcus epidermidis.

Autor: Reis SVD; Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil., Ribeiro NS; Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil., Rocha DA; Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil., Fortes IS; Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil., Trentin DDS; Departamento de Ciências Básicas da Saúde, Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil., Andrade SF; Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil., Macedo AJ; Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.; Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
Jazyk: angličtina
Zdroj: Chemical biology & drug design [Chem Biol Drug Des] 2020 Dec; Vol. 96 (6), pp. 1372-1379. Date of Electronic Publication: 2020 Aug 04.
DOI: 10.1111/cbdd.13745
Abstrakt: Staphylococcus aureus and Staphylococcus epidermidis are the main agents involved with implant-related infections. Their ability to adhere to medical devices with subsequent biofilm formation is crucial to the development of these infections. Herein, we described the antibacterial and antibiofilm activities of a quinazoline-based compound, N 4 -benzyl-N 2 -phenylquinazoline-2,4-diamine, against both biofilm-forming pathogens. The minimum inhibitory concentrations (MIC) were determined as 25 µM for S. aureus and 15 µM for S. epidermidis. At sub-MIC concentrations (20 µM for S. aureus and 10 µM for S. epidermidis), the compound was able to inhibit biofilm formation without interfere with bacterial growth, confirmed by scanning electron microscopy. Moreover, surfaces coated with the quinazoline-based compound were able to prevent bacterial adherence. In addition, this compound presented no toxicity to human red blood cells at highest MIC 25 µM and in vivo toxicity assay using Galleria mellonella larvae resulted in 82% survival with a high dose of 500 mg/kg body weight. These features evidence quinazoline-based compound as interesting entities to promising applications in biomedical fields, such as antimicrobial and in anti-infective approaches.
(© 2020 John Wiley & Sons A/S.)
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje