An injectable, self-assembled multicellular microsphere with the incorporation of fibroblast-derived extracellular matrix for therapeutic angiogenesis.

Autor: Du P; Center for Human Tissues & Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea., Da Costa ADS; Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea., Savitri C; Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea., Ha SS; Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea., Wang PY; Center for Human Tissues & Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China., Park K; Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea. Electronic address: kpark@kist.re.kr.
Jazyk: angličtina
Zdroj: Materials science & engineering. C, Materials for biological applications [Mater Sci Eng C Mater Biol Appl] 2020 Aug; Vol. 113, pp. 110961. Date of Electronic Publication: 2020 Apr 19.
DOI: 10.1016/j.msec.2020.110961
Abstrakt: Decellularized human lung fibroblast-derived matrix (hFDM) has demonstrated its excellent proangiogenic capability. In this study, we propose a self-assembled, injectable multicellular microspheres containing human umbilical vein endothelial cells (HUVECs) and mesenchymal stem cell (MSCs), collagen hydrogel (Col), and hFDM toward therapeutic angiogenesis. Those multicellular microspheres are spontaneously formed by the mixtures of cell and hydrogel after being dropped on the parafilm for several hours. The size of microspheres can be manipulated via adjusting the initial volume of droplets and the culture period. The cells in the microspheres are highly viable. Multicellular microspheres show good capability of cell migration on 2D culture plate and also exhibit active cell sprouting in 3D environment (Col) forming capillary-like structures. We also find that multiple angiogenic-related factors are significantly upregulated with the multicellular microspheres prepared via Col and hFDM (Col/hFDM) than those prepared using Col alone or single cells (harvested from cocultured HUVECs/MSCs in monolayer). For therapeutic efficacy evaluation, three different groups of single cells, Col and Col/hFDM microspheres are injected to a hindlimb ischemic model, respectively, along with PBS injection as a control group. It is notable that Col/hFDM microspheres significantly improve the blood reperfusion and greatly attenuate the fibrosis level of the ischemic regions. In addition, Col/hFDM microspheres show higher cell engraftment level than that of the other groups. The incorporation of transplanted cells with host vasculature is detectable only with the treatment of Col/hFDM. Current results suggest that hFDM plays an important role in the multicellular microspheres for angiogenic cellular functions in vitro as well as in vivo. Taken together, our injectable multicellular microspheres (Col/hFDM) offer a very promising platform for cell delivery and tissue regenerative applications.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2020 Elsevier B.V. All rights reserved.)
Databáze: MEDLINE