Golgi-Cox impregnation combined with fluorescence staining of amyloid plaques reveals local spine loss in an Alzheimer mouse model.

Autor: Kartalou GI; Institute of Neuro- and Sensory Physiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany; Institute of Physiology, Otto-von-Guericke-University Magdeburg, Germany. Electronic address: georgia-ioanna.kartalou@med.ovgu.de., Endres T; Institute of Physiology, Otto-von-Guericke-University Magdeburg, Germany., Lessmann V; Institute of Physiology, Otto-von-Guericke-University Magdeburg, Germany., Gottmann K; Institute of Neuro- and Sensory Physiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany. Electronic address: kurt.gottmann@uni-duesseldorf.de.
Jazyk: angličtina
Zdroj: Journal of neuroscience methods [J Neurosci Methods] 2020 Jul 15; Vol. 341, pp. 108797. Date of Electronic Publication: 2020 May 30.
DOI: 10.1016/j.jneumeth.2020.108797
Abstrakt: Background: Spine loss is a hallmark of Alzheimer´s and other neurodegenerative diseases, and testing candidate therapeutic drugs needs quantitative analysis of dendritic spine densities. Golgi-Cox impregnation of neurons is a classical method to visualize dendritic spines in diseased brains. Importantly, at early disease stages spine loss occurs locally in the vicinity of amyloid plaques, and concomitant fluorescence labeling of amyloid plaques is required to detect local spine damage.
New Method: Because Golgi-Cox impregnation is done on unsectioned brains, whereas fluorescence staining is performed on sectioned material, the combination is technically challenging. We have now developed a novel combination of Golgi-Cox impregnation with methoxy-X04 fluorescence labeling of plaques that is performed on unsectioned brains.
Results: We used this new combination method to quantify dendritic spine densities in mouse hippocampal CA1 pyramidal neurons. Comparison of neurons from wildtype and APP/PS1 mice revealed local spine loss in the vicinity of amyloid plaques in both male and female APP/PS1 mice.
Comparison With Existing Method: Golgi-Cox impregnation of neurons combined with methoxy-X04 staining of amyloid plaques is a highly reliable, easy-to-use method for permanent visualization of spines as compared to the technically more sophisticated and less stable fluorescence imaging of spines.
Conclusion: Our novel combination method will be highly useful for testing potential therapeutic drugs in Alzheimer mouse models.
(Copyright © 2020 Elsevier B.V. All rights reserved.)
Databáze: MEDLINE