Fabclavine diversity in Xenorhabdus bacteria.
Autor: | Wenski SL; Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany., Cimen H; Adnan Menderes University, Faculty of Arts and Sciences, Department of Biology, 09010 Aydin, Turkey., Berghaus N; Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany., Fuchs SW; Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany., Hazir S; Adnan Menderes University, Faculty of Arts and Sciences, Department of Biology, 09010 Aydin, Turkey., Bode HB; Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.; Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt, Germany.; Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt am Main, Germany. |
---|---|
Jazyk: | angličtina |
Zdroj: | Beilstein journal of organic chemistry [Beilstein J Org Chem] 2020 May 07; Vol. 16, pp. 956-965. Date of Electronic Publication: 2020 May 07 (Print Publication: 2020). |
DOI: | 10.3762/bjoc.16.84 |
Abstrakt: | The global threat of multiresistant pathogens has to be answered by the development of novel antibiotics. Established antibiotic applications are often based on so-called secondary or specialized metabolites (SMs), identified in large screening approaches. To continue this successful strategy, new sources for bioactive compounds are required, such as the bacterial genera Xenorhabdus or Photorhabdus . In these strains, fabclavines are widely distributed SMs with a broad-spectrum bioactivity. Fabclavines are hybrid SMs derived from nonribosomal peptide synthetases (NRPS), polyunsaturated fatty acid (PUFA), and polyketide synthases (PKS). Selected Xenorhabdus and Photorhabdus mutant strains were generated applying a chemically inducible promoter in front of the suggested fabclavine ( fcl ) biosynthesis gene cluster (BGC), followed by the analysis of the occurring fabclavines. Subsequently, known and unknown derivatives were identified and confirmed by MALDI-MS and MALDI-MS 2 experiments in combination with an optimized sample preparation. This led to a total number of 22 novel fabclavine derivatives in eight strains, increasing the overall number of fabclavines to 32. Together with the identification of fabclavines as major antibiotics in several entomopathogenic strains, our work lays the foundation for the rapid fabclavine identification and dereplication as the basis for future work of this widespread and bioactive SM class. (Copyright © 2020, Wenski et al.; licensee Beilstein-Institut.) |
Databáze: | MEDLINE |
Externí odkaz: |