Simple physical adsorption technique to immobilize Yarrowia lipolytica lipase purified by different methods on magnetic nanoparticles: Adsorption isotherms and thermodynamic approach.

Autor: Carvalho T; Escola de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149 - CT, Bl. E, Ilha do Fundão, 21941-909 Rio de Janeiro, RJ, Brazil., Pereira ADS; Escola de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149 - CT, Bl. E, Ilha do Fundão, 21941-909 Rio de Janeiro, RJ, Brazil., Bonomo RCF; Departamento de Tecnologia Rural e Animal - DTRA, Universidade Estadual do Sudoeste da Bahia, Rodovia BR 415, Km 03, S/N, 45700-000 Itapetinga, Bahia, Brazil., Franco M; Departamento de Ciências Exatas e Tecnológicas DCET, Universidade Estadual de Santa Cruz, Rod. Jorge Amado, km 16 - Salobrinho, 45662-900 Ilhéus, BA, Brazil., Finotelli PV; Laboratório de Nanotecnologia Biofuncional, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373 - Cidade Universitária, Rio de Janeiro - RJ, 21941-170 Rio de Janeiro, RJ, Brazil., Amaral PFF; Escola de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos, 149 - CT, Bl. E, Ilha do Fundão, 21941-909 Rio de Janeiro, RJ, Brazil.. Electronic address: pamaral@eq.ufrj.br.
Jazyk: angličtina
Zdroj: International journal of biological macromolecules [Int J Biol Macromol] 2020 Oct 01; Vol. 160, pp. 889-902. Date of Electronic Publication: 2020 May 23.
DOI: 10.1016/j.ijbiomac.2020.05.174
Abstrakt: Magnetic nanoparticles (Fe 3 O 4 ) were used for physical adsorption of lipase from Yarrowia lipolytica IMUFRJ 50682. The optimal adsorption conditions were obtained as follows: enzyme/support 19.3 mg/g and temperature of 20 °C for standard protein. High immobilization efficiency of 99% was obtained for 4 mL of crude lipase extract (containing 0.315 mg protein/mL) and 0.02 g of magnetic nanoparticles and this biocatalyst was recycled 30 times with 70% of lipase activity in the end. Purified lipase extracts were also efficiently immobilized and ultrafiltered lipase extract (ULE) and aqueous two-phase system lipase extract (ATPS_LE) when immobilized revealed higher hydrolytic activity in relation to CLE (2.8 and 4.0 times higher, respectively). Broad pH tolerance and high thermostability could be achieved by immobilization on magnetic nanoparticles, with 40% improvement in thermodynamic parameters at 60 °C. Kinetic parameters V max and K m were also better for ULE (V max : 2.3 times higher; K m 43% reduction) and ATPS_LE (V max : 3.0 times higher; K m : 38% reduction) immobilized on magnetic nanoparticles in relation to CLE. These results showed that the immobilization of lipase onto magnetic nanoparticles by physical adsorption is an efficient and simple way to obtain a great catalyst.
Competing Interests: Declaration of competing interest The authors declare that there are no conflicts of interest to disclose.
(Copyright © 2020 Elsevier B.V. All rights reserved.)
Databáze: MEDLINE