Implant-induced inflammatory angiogenesis is up-regulated in obese mice.
Autor: | Orellano LAA; Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627 - Campus Pampulha, Cx Post 468, CEP 31270-901 Belo Horizonte, MG, Brazil. Electronic address: lariza551@ufmg.br., de Almeida SA; Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627 - Campus Pampulha, Cx Post 468, CEP 31270-901 Belo Horizonte, MG, Brazil., Pereira LX; Nursing Department, Federal University of Alagoas, Av. Manoel Severino Barbosa Bom Sucesso - Campus Arapiraca, CEP: 57309-005 Arapiraca, AL, Brazil., Machado CT; Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627 - Campus Pampulha, Cx Post 468, CEP 31270-901 Belo Horizonte, MG, Brazil., Viana CTR; Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627 - Campus Pampulha, Cx Post 468, CEP 31270-901 Belo Horizonte, MG, Brazil., Andrade SP; Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627 - Campus Pampulha, Cx Post 468, CEP 31270-901 Belo Horizonte, MG, Brazil. Electronic address: andrades@icb.ufmg.br., Campos PP; Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627 - Campus Pampulha, Cx Post 468, CEP 31270-901 Belo Horizonte, MG, Brazil. Electronic address: paulapc@icb.ufmg.br. |
---|---|
Jazyk: | angličtina |
Zdroj: | Microvascular research [Microvasc Res] 2020 Sep; Vol. 131, pp. 104014. Date of Electronic Publication: 2020 May 22. |
DOI: | 10.1016/j.mvr.2020.104014 |
Abstrakt: | The damaging effects of obesity extend to multiple pre-existing tissue/organs. However, the influence of this condition on key components (inflammation and angiogenesis) of fibrovascular connective proliferating tissue, essential in repair processes, has been neglected. Our objective in this study was to investigate whether obesity would influence inflammatory-angiogenesis induced by synthetic matrix of polyether-polyurethane implanted subcutaneously in high-fat-fed obese C57/BL6 mice. Fourteen days after implantation, the inflammatory and angiogenic components of the newly formed tissue intra-implant were evaluated. The pro-inflammatory enzyme activities, myeloperoxidase (MPO) and N-acetyl-β-D-glucosaminidase (NAG), the levels of TNF-α, CXCL1/KC and CCL2 and NF-κB transcription factor were examined. Angiogenesis was determined by morphometric analysis of implant blood vessels, intra-implant levels of hemoglobin content, VEGF levels, and western blot for VEGFR2. All inflammatory and angiogenic markers were increased in the implants of obese mice compared with their non-obese counterparts. Similarly, activation of the NF-κB pathway and phosphorylation of VEGFR2 were higher in implants of obese mice (1.60 ± 0.28 Np65/Cp65; 0.96 ± 0.08 p-VEGFR2/VEGFR2-T) compared with implants of non-obese animals (1.40 ± 0.14; 0.49 ± 0.08). These observations suggest that obesity exerts critical role in sponge-induced inflammatory-angiogenesis, possibly by activating fibrovascular components in the inflamed microenvironment. Thus, this pathological condition causes damage not only to pre-existing tissues/organs but also to newly formed proliferating fibrovascular tissue. This is relevant to the development of therapeutic approaches to improve healing processes in patients with obesity. Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. (Copyright © 2020 Elsevier Inc. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |