Autor: |
de O Pereira ML; Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), 21941-909, Rio de Janeiro, Brasil. dgrasseschi@iq.ufrj.br., de Souza Paiva R, Vasconcelos TL, Oliveira AG, Oliveira Salles M, Toma HE, Grasseschi D |
Jazyk: |
angličtina |
Zdroj: |
Dalton transactions (Cambridge, England : 2003) [Dalton Trans] 2020 Nov 25; Vol. 49 (45), pp. 16296-16304. |
DOI: |
10.1039/d0dt01018a |
Abstrakt: |
The time scale for interfacial photoinduced electron transfer (PeT) in plasmonic nanoparticles is not well established and the details are still under debate. This has renewed the interest in studying the electron transfer effect from both experimental and theoretical points of view. We present a quantitative analysis of PeT in single spherical gold (Au) and gold@palladium core@shell (Au@Pd) nanoparticles supported on reduced graphene oxide (RGO) using dark-field hyperspectral microscopy (DFHM) and electrochemical impedance spectroscopy (EIS). By studying the plasmon bandwidth in the scattering spectra of single particles and by correlating it to the plasmon damping processes we showed that PeT occurs from the AuNPs to RGO in a 10 fs time scale with a quantum efficiency of 35%. The introduction of a Pd shell on the AuNPs decreases the PeT time, with transfer occurring in as little as 1.7 fs with quantum yield higher than 74%. Furthermore, EIS showed a smaller resistance for PeT on RGO/Au@PdNPs under green light illumination. Our results can improve the understanding of the chemical interface damping process due to PeT in plasmonic nanomaterials and can enable the design of more efficient plasmon enhanced photocatalysts. |
Databáze: |
MEDLINE |
Externí odkaz: |
|