Rapid functional optoacoustic micro-angiography in a burst mode.

Autor: Hofmann UAT, Rebling J, Estrada H, Subochev P, Razansky D
Jazyk: angličtina
Zdroj: Optics letters [Opt Lett] 2020 May 01; Vol. 45 (9), pp. 2522-2525.
DOI: 10.1364/OL.387630
Abstrakt: Optoacoustic microscopy (OAM) can image intrinsic optical absorption contrast at depths of several millimeters where state-of-the-art optical microscopy techniques fail due to intense light scattering in living tissues. Yet, wide adoption of OAM in biology and medicine is hindered by slow image acquisition speed, small field of view (FOV), and/or lack of spectral differentiation capacity of common system implementations. We report on a rapid acquisition functional optoacoustic micro-angiography approach that employs a burst-mode laser triggering scheme to simultaneously acquire multi-wavelength 3D images over an extended FOV covering ${50}\;{\rm mm} \times {50}\;{\rm mm}$50mm×50mm in a single mechanical overfly scan, attaining 28 µm and 14 µm resolution in lateral and axial dimensions, respectively. Owing to an ultrawideband low-noise design featuring a spherically focused polyvinylidene difluoride transducer, we demonstrate imaging of human skin and underlying vasculature at up to 3.8 mm depth when using per-pulse laser energies of only 25 µJ without employing signal averaging. Overall, the developed system greatly enhances performance and usability of OAM for dermatologic and micro-angiographic studies.
Databáze: MEDLINE