Observation of giant spin-split Fermi-arc with maximal Chern number in the chiral topological semimetal PtGa.

Autor: Yao M; Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany., Manna K; Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany. Kaustuv.Manna@cpfs.mpg.de., Yang Q; Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany., Fedorov A; Helmholtz-Zentrum Berlin fur Materialien und Energie, Berlin, Germany.; Institute for Solid State Research, Leibniz IFW Dresden, 01069, Dresden, Germany., Voroshnin V; Helmholtz-Zentrum Berlin fur Materialien und Energie, Berlin, Germany., Valentin Schwarze B; Dresden High Magnetic Field Laboratory (HLD-EMFL) and Würzburg-Dresden Cluster of Excellence ct.qmat, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany.; Institute for Solid-State and Materials Physics, Technical University Dresden, 01062, Dresden, Germany., Hornung J; Dresden High Magnetic Field Laboratory (HLD-EMFL) and Würzburg-Dresden Cluster of Excellence ct.qmat, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany.; Institute for Solid-State and Materials Physics, Technical University Dresden, 01062, Dresden, Germany., Chattopadhyay S; Dresden High Magnetic Field Laboratory (HLD-EMFL) and Würzburg-Dresden Cluster of Excellence ct.qmat, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany., Sun Z; National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China., Guin SN; Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany., Wosnitza J; Dresden High Magnetic Field Laboratory (HLD-EMFL) and Würzburg-Dresden Cluster of Excellence ct.qmat, Helmholtz-Zentrum Dresden-Rossendorf, 01328, Dresden, Germany.; Institute for Solid-State and Materials Physics, Technical University Dresden, 01062, Dresden, Germany., Borrmann H; Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany., Shekhar C; Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany., Kumar N; Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany., Fink J; Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany.; Institute for Solid State Research, Leibniz IFW Dresden, 01069, Dresden, Germany.; Institute for Solid-State and Materials Physics, Technical University Dresden, 01062, Dresden, Germany., Sun Y; Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany., Felser C; Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany. Claudia.Felser@cpfs.mpg.de.
Jazyk: angličtina
Zdroj: Nature communications [Nat Commun] 2020 Apr 27; Vol. 11 (1), pp. 2033. Date of Electronic Publication: 2020 Apr 27.
DOI: 10.1038/s41467-020-15865-x
Abstrakt: Non-symmorphic chiral topological crystals host exotic multifold fermions, and their associated Fermi arcs helically wrap around and expand throughout the Brillouin zone between the high-symmetry center and surface-corner momenta. However, Fermi-arc splitting and realization of the theoretically proposed maximal Chern number rely heavily on the spin-orbit coupling (SOC) strength. In the present work, we investigate the topological states of a new chiral crystal, PtGa, which has the strongest SOC among all chiral crystals reported to date. With a comprehensive investigation using high-resolution angle-resolved photoemission spectroscopy, quantum-oscillation measurements, and state-of-the-art ab initio calculations, we report a giant SOC-induced splitting of both Fermi arcs and bulk states. Consequently, this study experimentally confirms the realization of a maximal Chern number equal to ±4 in multifold fermionic systems, thereby providing a platform to observe large-quantized photogalvanic currents in optical experiments.
Databáze: MEDLINE