Effect of dual-frequency ultrasound on the formation of lysinoalanine and structural characterization of rice dreg protein isolates.

Autor: Zhang Z; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Applied Chemistry and Biological Engineering, Weifang Engineering Vocational College, 8979 Yunmenshan South Road, Qingzhou, Shandong 262500, China., Wang Y; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Applied Chemistry and Biological Engineering, Weifang Engineering Vocational College, 8979 Yunmenshan South Road, Qingzhou, Shandong 262500, China., Jiang H; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China., Dai C; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China., Xing Z; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China., Kumah Mintah B; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China., Dabbour M; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, P.O. Box 13736, Moshtohor, Qaluobia, Egypt., He R; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China. Electronic address: heronghai1971@126.com., Ma H; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
Jazyk: angličtina
Zdroj: Ultrasonics sonochemistry [Ultrason Sonochem] 2020 Oct; Vol. 67, pp. 105124. Date of Electronic Publication: 2020 Apr 09.
DOI: 10.1016/j.ultsonch.2020.105124
Abstrakt: The effect of dual-frequency ultrasound treatment with different working modes on the lysinoalanine (LAL) formation and structural characterization of rice dreg protein isolates (RDPI) was studied during alkaline exaction processing. Ultrasonic notably decreased the LAL amount of RDPI and enhanced the protein dissolution rate. The LAL content of RDPI, especially sequential dual frequency 20/40 kHz, decreased by 12.02% (P < 0.05), compared to non-sonicated samples. Herein, the protein dissolution rate was higher. The changes in sulfhydryl groups was positively correlated with the LAL formation. The amino acids (AA) such as threonine (Thr), lysine (Lys), and arginine (Arg) were reduced, resulting in a decrease in LAL content following sonication. Besides, ultrasonication altered protein secondary structure by reducing random coil and β-sheet contents, while α-helix and β-turn contents increased. Alterations in the surface hydrophobicity, particle size, particle size distribution, and microstructure indicated more irregular fragment with microparticles of RDPI by sonochemical treatment. Thus, ultrasound treatment may be a new and efficacious process for controlling the LAL generation in prepared-protein food(s) during alkali extraction.
Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2020 Elsevier B.V. All rights reserved.)
Databáze: MEDLINE