Neuroprotective Potential of Allium sativum against Monosodium Glutamate-Induced Excitotoxicity: Impact on Short-Term Memory, Gliosis, and Oxidative Stress.

Autor: Hazzaa SM; Department of Medical Physiology, Faculty of Medicine, Menoufia University, Shebeen Elkom 32511, Egypt., Abdelaziz SAM; Department of Histology, Faculty of Medicine, Menoufia University, Shebeen Elkom 32511, Egypt., Abd Eldaim MA; Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary, Menoufia University, Shebeen Elkom 32511, Egypt., Abdel-Daim MM; Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt., Elgarawany GE; Department of Medical Physiology, Faculty of Medicine, Menoufia University, Shebeen Elkom 32511, Egypt.
Jazyk: angličtina
Zdroj: Nutrients [Nutrients] 2020 Apr 10; Vol. 12 (4). Date of Electronic Publication: 2020 Apr 10.
DOI: 10.3390/nu12041028
Abstrakt: This study evaluated the neuroprotective potential of Allium sativum against monosodium glutamate (MSG)-induced neurotoxicity with respect to its impact on short-term memory in rats. Forty male Wistar albino rats were assigned into four groups. The control group received distilled water. The second group was administered Allium sativum powder (200 mg/kg of body weight) orally for 7 successive days, then was left without treatment until the 30th day. The third group was injected intraperitoneally with MSG (4 g/kg of body weight) for 7 successive days, then left without treatment until the 30th day. The fourth group was injected with MSG in the same manner as the third group and was treated with Allium sativum powder in the same manner as the second group, simultaneously. Phytochemical analysis of Allium sativum powder identified the presence of diallyl disulphide, carvone, diallyl trisulfide, and allyl tetrasulfide. MSG-induced excitotoxicity and cognitive deficit were represented by decreased distance moved and taking a long time to start moving from the center in the open field, as well as lack of curiosity in investigating the novel object and novel arm. Moreover, MSG altered hippocampus structure and increased MDA concentration and protein expression of glial fibrillary acidic protein (GFAP), calretinin, and caspase-3, whereas it decreased superoxide dismutase (SOD) activity and protein expression of Ki-67 in brain tissue. However, Allium sativum powder prevented MSG-induced neurotoxicity and improved short-term memory through enhancing antioxidant activity and reducing lipid peroxidation. In addition, it decreased protein expression of GFAP, calretinin, and caspase-3 and increased protein expression of Ki-67 in brain tissues and retained brain tissue architecture. This study indicated that Allium sativum powder ameliorated MSG-induced neurotoxicity through preventing oxidative stress-induced gliosis and apoptosis of brain tissue in rats.
Databáze: MEDLINE