The effect of bed roughness uncertainty on tidal stream power estimates for the Pentland Firth.

Autor: Kreitmair MJ; School of Engineering, University of Edinburgh, Edinburgh EH9 3FB, UK., Adcock TAA; Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK., Borthwick AGL; School of Engineering, University of Edinburgh, Edinburgh EH9 3FB, UK., Draper S; Faculty of Engineering, Computing and Mathematics, The University of Western Australia, Crawley Western Australia 6009, Australia., van den Bremer TS; Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK.
Jazyk: angličtina
Zdroj: Royal Society open science [R Soc Open Sci] 2020 Jan 15; Vol. 7 (1), pp. 191127. Date of Electronic Publication: 2020 Jan 15 (Print Publication: 2020).
DOI: 10.1098/rsos.191127
Abstrakt: Uncertainty affects estimates of the power potential of tidal currents, resulting in large ranges in values reported for sites such as the Pentland Firth, UK. Kreitmair et al. (2019, R. Soc. open sci. 6 , 180941. (doi:10.1098/rsos.191127)) have examined the effect of uncertainty in bottom friction on tidal power estimates by considering idealized theoretical models. The present paper considers the role of bottom friction uncertainty in a realistic numerical model of the Pentland Firth spanned by different fence configurations. We find that uncertainty in removable power estimates resulting from bed roughness uncertainty depends on the case considered, with relative uncertainty between 2% (for a fully spanned channel with small values of mean roughness and input uncertainty) and 44% (for an asymmetrically confined channel with high values of bed roughness and input uncertainty). Relative uncertainty in power estimates is generally smaller than (input) relative uncertainty in bottom friction by a factor of between 0.2 and 0.7, except for low turbine deployments and very high mean values of friction. This paper makes a start at quantifying uncertainty in tidal stream power estimates, and motivates further work for proper characterization of the resource, accounting for uncertainty inherent in resource modelling.
Competing Interests: We declare we have no competing interests.
(© 2020 The Authors.)
Databáze: MEDLINE