Double power-law viscoelastic relaxation of living cells encodes motility trends.

Autor: de Sousa JS; Departamento de Física, Universidade Federal do Ceará, 60455-970, Fortaleza, Ceará, Brazil. jeanlex@fisica.ufc.br., Freire RS; Central Analítica, Universidade Federal do Ceará, 60455-970, Fortaleza, Ceará, Brazil., Sousa FD; Departamento de Física, Universidade Federal do Ceará, 60455-970, Fortaleza, Ceará, Brazil., Radmacher M; Institute of Biophysics, University of Bremen, Otto-Hahn Allee 1, 28359, Bremen, Germany., Silva AFB; Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60440-554, Fortaleza, Ceará, Brazil., Ramos MV; Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, 60440-554, Fortaleza, Ceará, Brazil., Monteiro-Moreira ACO; Centro de Biologia Experimental, Universidade de Fortaleza, 60811-905, Fortaleza, Ceará, Brazil., Mesquita FP; Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Universidade Federal do Ceará, 60430-275, Fortaleza, Ceará, Brazil., Moraes MEA; Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Universidade Federal do Ceará, 60430-275, Fortaleza, Ceará, Brazil., Montenegro RC; Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Universidade Federal do Ceará, 60430-275, Fortaleza, Ceará, Brazil., Oliveira CLN; Departamento de Física, Universidade Federal do Ceará, 60455-970, Fortaleza, Ceará, Brazil.
Jazyk: angličtina
Zdroj: Scientific reports [Sci Rep] 2020 Mar 16; Vol. 10 (1), pp. 4749. Date of Electronic Publication: 2020 Mar 16.
DOI: 10.1038/s41598-020-61631-w
Abstrakt: Living cells are constantly exchanging momentum with their surroundings. So far, there is no consensus regarding how cells respond to such external stimuli, although it reveals much about their internal structures, motility as well as the emergence of disorders. Here, we report that twelve cell lines, ranging from healthy fibroblasts to cancer cells, hold a ubiquitous double power-law viscoelastic relaxation compatible with the fractional Kelvin-Voigt viscoelastic model. Atomic Force Microscopy measurements in time domain were employed to determine the mechanical parameters, namely, the fast and slow relaxation exponents, the crossover timescale between power law regimes, and the cell stiffness. These cell-dependent quantities show strong correlation with their collective migration and invasiveness properties. Beyond that, the crossover timescale sets the fastest timescale for cells to perform their biological functions.
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje