Effect of Louisiana sweet crude oil on a Pacific coral, Pocillopora damicornis.

Autor: May LA; Consolidated Safety Services, Inc. contractor for National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Stressor Detection and Impacts Division, Hollings Marine Laboratory, 331 Ft. Johnson Rd., Charleston, SC, 29412, USA. Electronic address: lisa.may@noaa.gov., Burnett AR; Consolidated Safety Services, Inc. contractor for National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Stressor Detection and Impacts Division, Hollings Marine Laboratory, 331 Ft. Johnson Rd., Charleston, SC, 29412, USA., Miller CV; Consolidated Safety Services, Inc. contractor for National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Stressor Detection and Impacts Division, Hollings Marine Laboratory, 331 Ft. Johnson Rd., Charleston, SC, 29412, USA., Pisarski E; Consolidated Safety Services, Inc. contractor for National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Stressor Detection and Impacts Division, Hollings Marine Laboratory, 331 Ft. Johnson Rd., Charleston, SC, 29412, USA., Webster LF; National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Stressor Detection and Impacts Division, Hollings Marine Laboratory, 331 Fort Johnson Rd., Charleston, SC, 29412, USA., Moffitt ZJ; Consolidated Safety Services, Inc. contractor for National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Stressor Detection and Impacts Division, Hollings Marine Laboratory, 331 Ft. Johnson Rd., Charleston, SC, 29412, USA., Pennington P; National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Stressor Detection and Impacts Division, 219 Ft. Johnson Rd., Charleston, SC, 29412, USA., Wirth E; National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Stressor Detection and Impacts Division, Hollings Marine Laboratory, 331 Fort Johnson Rd., Charleston, SC, 29412, USA., Baker G; National Oceanic and Atmospheric Administration, National Ocean Service, Office of Response and Restoration, 1305 East West Highway, Room 10317, Silver Spring, MD, 20910, USA., Ricker R; National Oceanic and Atmospheric Administration, National Ocean Service, Office of Response and Restoration, Assessment and Restoration Division, 1410 Neotomas Ave., Suite 110, Santa Rosa, CA, 95405, USA., Woodley CM; National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Stressor Detection and Impacts Division, Hollings Marine Laboratory, 331 Fort Johnson Rd., Charleston, SC, 29412, USA.
Jazyk: angličtina
Zdroj: Aquatic toxicology (Amsterdam, Netherlands) [Aquat Toxicol] 2020 May; Vol. 222, pp. 105454. Date of Electronic Publication: 2020 Feb 28.
DOI: 10.1016/j.aquatox.2020.105454
Abstrakt: Recent oil spill responses such as the Deepwater Horizon event have underscored the need for crude oil ecotoxicological threshold data for shallow water corals to assist in natural resource damage assessments. We determined the toxicity of a mechanically agitated oil-seawater mixture (high-energy water-accommodated fraction, HEWAF) of a sweet crude oil on a branched stony coral, Pocillopora damicornis. We report the results of two experiments: a 96 h static renewal exposure experiment and a "pulse-chase" experiment of three short-term exposure durations followed by a recovery period in artificial seawater. Five endpoints were used to determine ecotoxicological values: 1) algal symbiont chlorophyll fluorescence, 2) a tissue regeneration assay and a visual health metric with three endpoints: 3) tissue integrity, 4) tissue color, and 5) polyp behavior. The sum of 50 entrained polycyclic aromatic hydrocarbons (tPAH50) was used as a proxy for oil exposure. For the 96 h exposure dose response experiment, dark-adapted maximum quantum yield (Fv/Fm) of the dinoflagellate symbionts was least affected by crude oil (EC 50 = 913 μg/L tPAH50); light-adapted effective quantum yield (EQY) was more sensitive (EC 50  =  428 μg/L tPAH50). In the health assessment, polyp behavior (EC 50 = 27 μg/L tPAH50) was more sensitive than tissue integrity (EC 50 = 806 μg/L tPAH50) or tissue color (EC 50 = 926 μg/L tPAH50). Tissue regeneration proved to be a particularly sensitive measurement for toxicity effects (EC 50  = 10 μg/L tPAH50). Short duration (6-24 h) exposures using 503 μg/L tPAH50 (average concentration) resulted in negative impacts to P. damicornis and its symbionts. Recovery of chlorophyll a fluorescence levels for 6-24 h oil exposures was observed in a few hours (Fv/Fm) to several days (EQY) following recovery in fresh seawater. The coral health assessments for tissue integrity and tissue color were not affected following short-term oil exposure durations, but the 96 h treatment duration resulted in significant decreases for both. A reduction in polyp behavior (extension) was observed for all treatment durations, with recovery observed for the short-term (6-24 h) exposures within 1-2 days following placement in fresh seawater. Wounded and intact fragments exposed to oil treatments were particularly sensitive, with significant delays observed in tissue regeneration. Estimating ecotoxicological values for P. damicornis exposed to crude oil HEWAFs provides a basis for natural resource damage assessments for oil spills in reef ecosystems. These data, when combined with ecotoxicological values for other coral reef species, will contribute to the development of species sensitivity models.
Competing Interests: Declarations of Competing Interest None.
(Copyright © 2020 Elsevier B.V. All rights reserved.)
Databáze: MEDLINE