Green and Sustainable Manufacture of Ultrapure Engineered Nanomaterials.

Autor: Ortiz de Zárate D; Valencia Nanophotonics Technology Center, Universitat Politècnica de València, 46022 València, Spain., García-Meca C; Valencia Nanophotonics Technology Center, Universitat Politècnica de València, 46022 València, Spain., Pinilla-Cienfuegos E; Valencia Nanophotonics Technology Center, Universitat Politècnica de València, 46022 València, Spain., Ayúcar JA; Valencia Nanophotonics Technology Center, Universitat Politècnica de València, 46022 València, Spain., Griol A; Valencia Nanophotonics Technology Center, Universitat Politècnica de València, 46022 València, Spain., Bellières L; Valencia Nanophotonics Technology Center, Universitat Politècnica de València, 46022 València, Spain., Hontañón E; Grupo de Nanosensores y Sistemas Inteligentes (NoySI), CSIC, 28006 Madrid, Spain., Kruis FE; Institute of Nanostructures and Technology, University Duisburg-Essen, 47057 Duisburg, Germany., Martí J; Valencia Nanophotonics Technology Center, Universitat Politècnica de València, 46022 València, Spain.
Jazyk: angličtina
Zdroj: Nanomaterials (Basel, Switzerland) [Nanomaterials (Basel)] 2020 Mar 05; Vol. 10 (3). Date of Electronic Publication: 2020 Mar 05.
DOI: 10.3390/nano10030466
Abstrakt: Nanomaterials with very specific features (purity, colloidal stability, composition, size, shape, location…) are commonly requested by cutting-edge technologic applications, and hence a sustainable process for the mass-production of tunable/engineered nanomaterials would be desirable. Despite this, tuning nano-scale features when scaling-up the production of nanoparticles/nanomaterials has been considered the main technological barrier for the development of nanotechnology. Aimed at overcoming these challenging frontier, a new gas-phase reactor design providing a shorter residence time, and thus a faster quenching of nanoclusters growth, is proposed for the green, sustainable, versatile, cost-effective, and scalable manufacture of ultrapure engineered nanomaterials (ranging from nanoclusters and nanoalloys to engineered nanostructures) with a tunable degree of agglomeration, composition, size, shape, and location. This method enables: (1) more homogeneous, non-agglomerated ultrapure Au-Ag nanoalloys under 10 nm; (2) 3-nm non-agglomerated ultrapure Au nanoclusters with lower gas flow rates; (3) shape-controlled Ag NPs; and (4) stable Au and Ag engineered nanostructures: nanodisks, nanocrosses, and 3D nanopillars. In conclusion, this new approach paves the way for the green and sustainable mass-production of ultrapure engineered nanomaterials.
Databáze: MEDLINE