Autor: |
Esmailpour A; Department of Physics, Faculty of Sciences, Shahid Rajaee Teacher Training University, Tehran 22970021, Iran., Majidi R; Department of Physics, Faculty of Sciences, Shahid Rajaee Teacher Training University, Tehran 22970021, Iran., Taghiyari HR; Wood Science and Technology Department, Faculty of Materials Engineering & New Technologies, Shahid Rajaee Teacher Training University, Tehran 22970021, Iran., Ganjkhani M; Wood Science and Technology Department, Faculty of Materials Engineering & New Technologies, Shahid Rajaee Teacher Training University, Tehran 22970021, Iran., Mohseni Armaki SM; Faculty of Physics, Shahid Beheshti University, Evin, Tehran 22970021, Iran., Papadopoulos AN; Laboratory of Wood Chemistry and Technology, Department of Forestry and Natural Environment, International Hellenic University, GR-661 00 Drama, Greece. |
Abstrakt: |
The aim of this paper was to improve the fire retardancy of beech wood by graphene. Six fire properties, namely time to onset of ignition, time to onset of glowing, back-darkening time, back-holing time, burnt area and weight loss were measured using a newly developed apparatus with piloted ignition. A set of specimens was treated with nano-wollastonite (NW) for comparison with the results of graphene-treated specimens. Graphene and NW were mixed in a water-based paint and brushed on the front and back surface of specimens. Results demonstrated significant improving effects of graphene on times to onset of ignition and glowing. Moreover, graphene drastically decreased the burnt area. Comparison between graphene- and NW-treated specimens demonstrated the superiority of graphene in all six fire properties measured here. Fire retardancy impact of graphene was attributed to its very low reaction ability with oxygen, as well as its high and low thermal conductivity in in-plane and cross-section directions, respectively. The improved fire-retardancy properties by the addition of graphene in paint implied its effectiveness in hindering the spread of fire in buildings and structures, providing a longer timespan to extinguish a fire, and ultimately reducing the loss of life and property. Based on the improvements in fire properties achieved in graphene-treated specimens, it was concluded that graphene has a great potential to be used as a fire retardant in solid wood species. |