Biosorptive removal of acid orange 74 dye by HCl-pretreated Lemna sp.

Autor: Reyes-Ledezma JL; Departamento de Ingeniería Bioquímica, Unidad Profesional Adolfo López Mateos, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City, Mexico., Uribe-Ramírez D; Departamento de Ingeniería Bioquímica, Unidad Profesional Adolfo López Mateos, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City, Mexico., Cristiani-Urbina E; Departamento de Ingeniería Bioquímica, Unidad Profesional Adolfo López Mateos, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City, Mexico., Morales-Barrera L; Departamento de Ingeniería Bioquímica, Unidad Profesional Adolfo López Mateos, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City, Mexico.
Jazyk: angličtina
Zdroj: PloS one [PLoS One] 2020 Feb 06; Vol. 15 (2), pp. e0228595. Date of Electronic Publication: 2020 Feb 06 (Print Publication: 2020).
DOI: 10.1371/journal.pone.0228595
Abstrakt: Acid orange 74 (AO74) is a chromium-complex monoazo acid dye widely used in the textile industry. Due to being highly toxic and non-biodegradable, it must be removed from polluted water to protect the health of people and the environment. The aim of this study was two-fold: to evaluate the biosorption of AO74 from an aqueous solution by utilizing HCl-pretreated Lemna sp. (HPL), and to examine dye desorption from the plant material. The maximum capacity of AO74 biosorption (64.24 mg g-1) was reached after 4 h at the most adequate pH, which was 2. The biosorption capacity decreased 25% (to 48.18 mg g-1) during the second biosorption/desorption cycle and remained essentially unchanged during the third cycle. The pseudo-second-order kinetics model concurred well with the experimental results of assays involving various levels of pH in the eluent solution and distinct initial concentrations of AO74. NaOH (0.01 M) was the best eluent solution. The Toth isotherm model best described AO74 biosorption equilibrium data. FTIR analysis confirmed the crucial role of HPL proteins in AO74 biosorption. SEM-EDX and CLSM techniques verified the effective biosorption/desorption of the dye during the three cycles. Therefore, HPL has potential for the removal of AO74 dye from wastewaters.
Competing Interests: The authors have declared that no competing interests exist.
Databáze: MEDLINE