Combined genome-wide association study and transcriptome analysis reveal candidate genes for resistance to Fusarium ear rot in maize.

Autor: Yao L; State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China., Li Y; State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China., Ma C; State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China., Tong L; State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China., Du F; State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China., Xu M; State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
Jazyk: angličtina
Zdroj: Journal of integrative plant biology [J Integr Plant Biol] 2020 Oct; Vol. 62 (10), pp. 1535-1551. Date of Electronic Publication: 2020 Mar 23.
DOI: 10.1111/jipb.12911
Abstrakt: Fusarium ear rot, caused by Fusarium verticillioides, is a devastating fungal disease in maize that reduces yield and quality; moreover, F. verticillioides produces fumonisin mycotoxins, which pose serious threats to human and animal health. Here, we performed a genome-wide association study (GWAS) under three environmental conditions and identified 34 single-nucleotide polymorphisms (SNPs) that were significantly associated with Fusarium ear rot resistance. With reference to the maize B73 genome, 69 genes that overlapped with or were adjacent to the significant SNPs were identified as potential resistance genes to Fusarium ear rot. Comparing transcriptomes of the most resistant and most susceptible lines during the very early response to Fusarium ear rot, we detected many differentially expressed genes enriched for pathways related to plant immune responses, such as plant hormone signal transduction, phenylpropanoid biosynthesis, and cytochrome P450 metabolism. More than one-fourth of the potential resistance genes detected in the GWAS were differentially expressed in the transcriptome analysis, which allowed us to predict numbers of candidate genes for maize resistance to ear rot, including genes related to plant hormones, a MAP kinase, a PR5-like receptor kinase, and heat shock proteins. We propose that maize plants initiate early immune responses to Fusarium ear rot mainly by regulating the growth-defense balance and promoting biosynthesis of defense compounds.
(© 2020 The Authors. Journal of Integrative Plant Biology Published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.)
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje