Nonisentropic Release of a Shocked Solid.

Autor: Heighway PG; Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom., Sliwa M; Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom., McGonegle D; Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom., Wehrenberg C; Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550, USA., Bolme CA; Los Alamos National Laboratory, Bikini Atoll Road, SM-30, Los Alamos, New Mexico 87545, USA., Eggert J; Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550, USA., Higginbotham A; York Plasma Institute, University of York, Heslington, York YO10 5DD, United Kingdom., Lazicki A; Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550, USA., Lee HJ; SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA., Nagler B; SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA., Park HS; Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550, USA., Rudd RE; Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550, USA., Smith RF; Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550, USA., Suggit MJ; Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom., Swift D; Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550, USA., Tavella F; SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA., Remington BA; Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550, USA., Wark JS; Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom.
Jazyk: angličtina
Zdroj: Physical review letters [Phys Rev Lett] 2019 Dec 13; Vol. 123 (24), pp. 245501.
DOI: 10.1103/PhysRevLett.123.245501
Abstrakt: We present molecular dynamics simulations of shock and release in micron-scale tantalum crystals that exhibit postbreakout temperatures far exceeding those expected under the standard assumption of isentropic release. We show via an energy-budget analysis that this is due to plastic-work heating from material strength that largely counters thermoelastic cooling. The simulations are corroborated by experiments where the release temperatures of laser-shocked tantalum foils are deduced from their thermal strains via in situ x-ray diffraction and are found to be close to those behind the shock.
Databáze: MEDLINE