Marked sexual dimorphism in neuroendocrine mechanisms for the exacerbation of paclitaxel-induced painful peripheral neuropathy by stress.

Autor: Ferrari LF; Departments of Medicine and Oral Surgery, Division of Neuroscience, University of California at San Francisco, San Francisco, CA, United States. Dr. Ferrari is now with the Department of Anesthesiology, University of Utah, Salt Lake City, UT, United States., Araldi D; Departments of Medicine and Oral Surgery, Division of Neuroscience, University of California at San Francisco, San Francisco, CA, United States. Dr. Ferrari is now with the Department of Anesthesiology, University of Utah, Salt Lake City, UT, United States., Green PG; Departments of Oral and Maxillofacial Surgery and Preventive and Restorative Dental Sciences, University of California at San Francisco, San Francisco, CA, United States., Levine JD; Departments of Medicine and Oral Surgery, Division of Neuroscience, University of California at San Francisco, San Francisco, CA, United States. Dr. Ferrari is now with the Department of Anesthesiology, University of Utah, Salt Lake City, UT, United States.
Jazyk: angličtina
Zdroj: Pain [Pain] 2020 Apr; Vol. 161 (4), pp. 865-874.
DOI: 10.1097/j.pain.0000000000001798
Abstrakt: Chemotherapy-induced neuropathic pain is a serious adverse effect of chemotherapeutic agents. Clinical evidence suggests that stress is a risk factor for development and/or worsening of chemotherapy-induced peripheral neuropathy (CIPN). We evaluated the impact of stress and stress axis mediators on paclitaxel CIPN in male and female rats. Paclitaxel produced mechanical hyperalgesia, over the 4-day course of administration, peaking by day 7, and still present by day 28, with no significant difference between male and female rats. Paclitaxel hyperalgesia was enhanced in male and female rats previously exposed to unpredictable sound stress, but not in rats that were exposed to sound stress after developing paclitaxel CIPN. We evaluated the role of the neuroendocrine stress axes: in adrenalectomized rats, paclitaxel did not produce hyperalgesia. Intrathecal administration of antisense oligodeoxynucleotides (ODN) reduced expression of β2-adrenergic receptors on nociceptors, and paclitaxel-induced hyperalgesia was slightly attenuated in males, but markedly attenuated in females. By contrast, after intrathecal administration of antisense ODN to decrease expression of glucocorticoid receptors, hyperalgesia was markedly attenuated in males, but unaffected in females. Both ODNs together markedly attenuated paclitaxel-induced hyperalgesia in both males and females. We evaluated paclitaxel-induced CIPN in stress-resilient (produced by neonatal handling) and stress-sensitive (produced by neonatal limited bedding). Neonatal handling significantly attenuated paclitaxel-induced CIPN in adult male, but not in adult female rats. Neonatal limited bedding did not affect the magnitude of paclitaxel-induced CIPN in either male or female. This study provides evidence that neuroendocrine stress axis activity has a marked, sexually dimorphic, effect on paclitaxel-induced painful CIPN.
Databáze: MEDLINE