Fingerprint Identification With Shallow Multifeature View Classifier.

Autor: Ghafoor M, Tariq SA, Zia T, Taj IA, Abbas A, Hassan A, Zomaya AY
Jazyk: angličtina
Zdroj: IEEE transactions on cybernetics [IEEE Trans Cybern] 2021 Sep; Vol. 51 (9), pp. 4515-4527. Date of Electronic Publication: 2021 Sep 15.
DOI: 10.1109/TCYB.2019.2957188
Abstrakt: This article presents an efficient fingerprint identification system that implements an initial classification for search-space reduction followed by minutiae neighbor-based feature encoding and matching. The current state-of-the-art fingerprint classification methods use a deep convolutional neural network (DCNN) to assign confidence for the classification prediction, and based on this prediction, the input fingerprint is matched with only the subset of the database that belongs to the predicted class. It can be observed for the DCNNs that as the architectures deepen, the farthest layers of the network learn more abstract information from the input images that result in higher prediction accuracies. However, the downside is that the DCNNs are data hungry and require lots of annotated (labeled) data to learn generalized network parameters for deeper layers. In this article, a shallow multifeature view CNN (SMV-CNN) fingerprint classifier is proposed that extracts: 1) fine-grained features from the input image and 2) abstract features from explicitly derived representations obtained from the input image. The multifeature views are fed to a fully connected neural network (NN) to compute a global classification prediction. The classification results show that the SMV-CNN demonstrated an improvement of 2.8% when compared to baseline CNN consisting of a single grayscale view on an open-source database. Moreover, in comparison with the state-of-the-art residual network (ResNet-50) image classification model, the proposed method performs comparably while being less complex and more efficient during training. The result of classification-based fingerprint identification has shown that the search space is reduced by over 50% without degradation of identification accuracies.
Databáze: MEDLINE