Remote Control of Mechanical Forces via Mitochondrial-Targeted Magnetic Nanospinners for Efficient Cancer Treatment.

Autor: Chen M; Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Road, Shanghai, 200123, China., Wu J; Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Road, Shanghai, 200123, China., Ning P; Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Road, Shanghai, 200123, China., Wang J; Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Road, Shanghai, 200123, China., Ma Z; Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Road, Shanghai, 200123, China., Huang L; Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Road, Shanghai, 200123, China., Plaza GR; Center for Biomedical Technology, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223, Spain., Shen Y; Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Road, Shanghai, 200123, China., Xu C; Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Road, Shanghai, 200123, China., Han Y; Feinberg School of Medicine, Northwestern University, 676 North Saint Clair Street, Suite 2210, Chicago, IL, 60611, USA., Lesniak MS; Feinberg School of Medicine, Northwestern University, 676 North Saint Clair Street, Suite 2210, Chicago, IL, 60611, USA., Liu Z; Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Road, Shanghai, 200123, China., Cheng Y; Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Institute for Translational Nanomedicine, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Road, Shanghai, 200123, China.
Jazyk: angličtina
Zdroj: Small (Weinheim an der Bergstrasse, Germany) [Small] 2020 Jan; Vol. 16 (3), pp. e1905424. Date of Electronic Publication: 2019 Dec 23.
DOI: 10.1002/smll.201905424
Abstrakt: In cells, mechanical forces play a key role in impacting cell behaviors, including adhesion, differentiation, migration, and death. Herein, a 20 nm mitochondria-targeted zinc-doped iron oxide nanocube is designed as a nanospinner to exert mechanical forces under a rotating magnetic field (RMF) at 15 Hz and 40 mT to fight against cancer. The nanospinners can efficiently target the mitochondria of cancer cells. By means of the RMF, the nanocubes assemble in alignment with the external field and produce a localized mechanical force to impair the cancer cells. Both in vitro and in vivo studies show that the nanospinners can damage the cancer cells and reduce the brain tumor growth rate after the application of the RMF. This nanoplatform provides an effective magnetomechanical approach to treat deep-seated tumors in a spatiotemporal fashion.
(© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.)
Databáze: MEDLINE