Autor: |
Dolganova IN; Russian Academy of Sciences, Institute of Solid State Physics, Chernogolovka, Russia.; Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russia.; Bauman Moscow State Technical University, Moscow, Russia., Shikunova IA; Russian Academy of Sciences, Institute of Solid State Physics, Chernogolovka, Russia., Katyba GM; Russian Academy of Sciences, Institute of Solid State Physics, Chernogolovka, Russia.; Bauman Moscow State Technical University, Moscow, Russia., Zotov AK; Russian Academy of Sciences, Institute of Solid State Physics, Chernogolovka, Russia., Mukhina EE; Bauman Moscow State Technical University, Moscow, Russia., Shchedrina MA; Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russia., Tuchin VV; Saratov State University, Saratov, Russia.; Russian Academy of Sciences, Institute of Precision Mechanics and Control, Saratov, Russia.; Tomsk State University, Tomsk, Russia., Zaytsev KI; Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russia.; Bauman Moscow State Technical University, Moscow, Russia.; Russian Academy of Sciences, Prokhorov General Physics Institute, Moscow, Russia., Kurlov VN; Russian Academy of Sciences, Institute of Solid State Physics, Chernogolovka, Russia.; Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russia. |
Abstrakt: |
Sapphire capillary needles fabricated by edge-defined film-fed growth (EFG) technique hold strong potential in laser thermotherapy and photodynamic therapy, thanks to the advanced physical properties of sapphire. These needles feature an as-grown optical quality, their length is tens of centimeters, and they contain internal capillary channels, with open or closed ends. They can serve as optically transparent bearing elements with optical fibers introduced into their capillary channels in order to deliver laser radiation to biological tissues for therapeutic and, in some cases, diagnostic purposes. A potential advantage of the EFG-grown sapphire needles is associated with an ability to form the tip of a needle with complex geometry, either as-grown or mechanically treated, aimed at controlling the output radiation pattern. In order to examine a potential of the radiation pattern shaping, we present a set of fabricated sapphire needles with different tips. We studied the radiation patterns formed at the output of these needles using a He-Ne laser as a light source, and used intralipid-based tissue phantoms to proof the concept experimentally and the Monte-Carlo modeling to proof it numerically. The observed results demonstrate a good agreement between the numerical and experimental data and reveal an ability to control within wide limits the direction of tissue exposure to light and the amount of exposed tissue by managing the sapphire needle tip geometry. |