Exploration of cryptic organic photosensitive compound as Zincphyrin IV in Streptomyces venezuelae ATCC 15439.

Autor: Nguyen HT; Department of Life Science and Biochemical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea., Pham VTT; Department of Life Science and Biochemical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea., Nguyen CT; Department of Life Science and Biochemical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea., Pokhrel AR; Department of Life Science and Biochemical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea., Kim TS; Department of Life Science and Biochemical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea., Kim D; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do, 14662, Korea., Na K; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do, 14662, Korea., Yamaguchi T; Department of Life Science and Biochemical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea.; Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea.; Genome-based BioIT Convergence Institute, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea., Sohng JK; Department of Life Science and Biochemical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea. sohng@sunmoon.ac.kr.; Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, Republic of Korea. sohng@sunmoon.ac.kr.
Jazyk: angličtina
Zdroj: Applied microbiology and biotechnology [Appl Microbiol Biotechnol] 2020 Jan; Vol. 104 (2), pp. 713-724. Date of Electronic Publication: 2019 Dec 09.
DOI: 10.1007/s00253-019-10262-x
Abstrakt: Zincphyrin IV is a potential organic photosensitizer which is of significant interest for applications in biomedicine, materials science, agriculture (as insecticide), and chemistry. Most studies on Zincphyrin are focused on Zincphyrin III while biosynthesis and application of Zincphyrin IV is comparatively less explored. In this study, we explored Zincphyrin IV production in Streptomyces venezuelae ATCC 15439 through combination of morphology engineering and "One strain many compounds" approach. The morphology engineering followed by change in culture medium led to activation of cryptic Zincphyrin IV biosynthetic pathway in S. venezuelae with subsequent detection of Zincphyrin IV. Morphology engineering applied in S. venezuelae increased the biomass from 7.17 to 10.5 mg/mL after 48 h of culture. Moreover, morphology of engineered strain examined by SEM showed reduced branching and fragmentation of mycelia. The distinct change in color of culture broth visually demonstrated the activation of the cryptic biosynthetic pathway in S. venezuelae. The production of Zincphyrin IV was found to be initiated after overexpression ssgA, resulting in the increase in titer from 4.21 to 7.54 μg/mL. Furthermore, Zincphyrin IV demonstrated photodynamic antibacterial activity against Bacillus subtilis and photodynamic anticancer activity against human ovarian carcinoma cell lines.
Databáze: MEDLINE
Nepřihlášeným uživatelům se plný text nezobrazuje