Different signaling and functionality of Rac1 and Rac1b in the progression of lung adenocarcinoma.

Autor: Seiz JR; Molecular Oncology of Solid Tumors, Internal Medicine, Science Unit for Basic and Clinical Medicine, Justus Liebig University Giessen, Aulweg 128, D-35392 Giessen, Germany., Klinke J; Signal Transduction of Cellular Motility, Internal Medicine, Science Unit for Basic and Clinical Medicine, Justus Liebig University Giessen, Aulweg 128, D-35392 Giessen, Germany., Scharlibbe L; Molecular Oncology of Solid Tumors, Internal Medicine, Science Unit for Basic and Clinical Medicine, Justus Liebig University Giessen, Aulweg 128, D-35392 Giessen, Germany., Lohfink D; Molecular Oncology of Solid Tumors, Internal Medicine, Science Unit for Basic and Clinical Medicine, Justus Liebig University Giessen, Aulweg 128, D-35392 Giessen, Germany., Heipel M; Signal Transduction of Cellular Motility, Internal Medicine, Science Unit for Basic and Clinical Medicine, Justus Liebig University Giessen, Aulweg 128, D-35392 Giessen, Germany., Ungefroren H; First Department of Medicine, UKSH, Campus Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany., Giehl K; Signal Transduction of Cellular Motility, Internal Medicine, Science Unit for Basic and Clinical Medicine, Justus Liebig University Giessen, Aulweg 128, D-35392 Giessen, Germany., Menke A; Molecular Oncology of Solid Tumors, Science Unit for Basic and Clinical Medicine, Justus Liebig University Giessen, Aulweg 128, D-35392 Giessen, Germany.
Jazyk: angličtina
Zdroj: Biological chemistry [Biol Chem] 2020 Mar 26; Vol. 401 (4), pp. 517-531.
DOI: 10.1515/hsz-2019-0329
Abstrakt: Rac1 is a ubiquitously expressed Rho GTPase and an important regulator of the actin cytoskeleton. Its splice variant Rac1b exhibits a 19-amino acid (aa) in-frame insertion and is predominantly active. Both proteins were described in tumorigenesis or metastasis. We investigated the contribution of Rac1 and Rac1b to tumor progression of human non-small-cell lung adenocarcinoma (NSCLA). Rac1 protein was present in 8/8 NSCLA cell lines analyzed, whereas Rac1b was expressed in only 6/8. In wound-healing assays, enhanced green fluorescence protein (EGFP)-Rac1 slightly decreased cell migration, whereas proliferation was increased in both, Rac1- and Rac1b-expressing cells. In the in vivo chorioallantoic invasion model, EGFP-Rac1-expressing cells formed more invasive tumors compared to EGFP-Rac1b. This increased invasiveness correlated with enhanced phosphorylation of p38α, AKT and glycogen synthase kinase 3β (GSK3β), and activation of serum response- and Smad-dependent gene promoters by Rac1. In contrast, Rac1b solely activated the mitogen-activated protein kinase (MAPK) JNK2, together with TCF/LEF1- and nuclear factor kappa B (NFκB)-responsive gene reporters. Rac1b, as Rac1, phosphorylated p38α, AKT and GSK3β. Knockdown of the splicing factor epithelial splicing regulatory protein 1 (ESRP1), which mediates out-splicing of exon 3b from Rac1 pre-messenger RNA, resulted in increased Rac1b messenger RNA (mRNA) and suppression of the epithelial-mesenchymal transition (EMT)-associated transcription factor ZEB1. Our data demonstrate different signaling and functional activities of Rac1 and Rac1b and an important role for Rac1 in lung cancer metastasis.
Databáze: MEDLINE