Autor: |
Bosseboeuf A; Normandy University, University of Caen Normandy (UNICAEN), Sorbonne University, French National Museum of Natural History (MNHN), University of Antilles (UA), French National Centre for Scientific Research (CNRS), French National Institute for Sustainable Development (IRD), Biology of Aquatic Organisms and Ecosystems (BOREA) Research Unit, Sciences Department, CS14032, 14032 CAEN CEDEX 5, France., Baron A; Group CELLIS PHARMA, Parc Technopolitain Atalante Saint Malo, 35400 Saint Malo, France., Duval E; Group CELLIS PHARMA, Parc Technopolitain Atalante Saint Malo, 35400 Saint Malo, France., Gautier A; Normandy University, University of Caen Normandy (UNICAEN), Sorbonne University, French National Museum of Natural History (MNHN), University of Antilles (UA), French National Centre for Scientific Research (CNRS), French National Institute for Sustainable Development (IRD), Biology of Aquatic Organisms and Ecosystems (BOREA) Research Unit, Sciences Department, CS14032, 14032 CAEN CEDEX 5, France., Sourdaine P; Normandy University, University of Caen Normandy (UNICAEN), Sorbonne University, French National Museum of Natural History (MNHN), University of Antilles (UA), French National Centre for Scientific Research (CNRS), French National Institute for Sustainable Development (IRD), Biology of Aquatic Organisms and Ecosystems (BOREA) Research Unit, Sciences Department, CS14032, 14032 CAEN CEDEX 5, France., Auvray P; Group CELLIS PHARMA, Parc Technopolitain Atalante Saint Malo, 35400 Saint Malo, France. |
Abstrakt: |
Cancer therapy is currently a major challenge within the research community, especially in reducing the side effects of treatments and to develop new specific strategies against cancers that still have a poor prognosis. In this context, alternative strategies using biotechnologies, such as marine peptides, have been developed based on their promise of effectivity associated with a low toxicity for healthy cells. The purpose of the present paper is to investigate the active mechanism of two peptides that were isolated from the epigonal tissue of the lesser spotted dogfish Scyliorhinus canicula L., identified NFDTDEQALEDVFSKYG (K092A) and EAPPEAAEEDEW (K092B) on the in vitro growth inhibition of ZR-75-1 mammary carcinoma cells and MDA-Pca-2b prostate cancer cells. The effects of the peptides on cell proliferation and cell death mechanisms were studied by the flow cytometry and immunofluorescence microscopy approaches. The results have shown the onset of both K092A- and K092B-induced early cytoskeleton changes, and then cell cycle perturbations followed by non-apoptotic cell death. Moreover, impedance perturbation and plasma membrane perforation in ZR-75-1 K092A-treated cell cultures and autophagy inhibition in MDA-Pca-2b K092B-treated cells have been observed. In conclusion, these two bioactive peptides from dogfish exhibit antineoplastic activity on the human prostate and breast cancer cells in vitro. |