Effects of chlorogenic acid on thermal stress tolerance in C. elegans via HIF-1, HSF-1 and autophagy.
Autor: | Carranza ADV; CIBICI, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina., Saragusti A; CIBICI, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina., Chiabrando GA; CIBICI, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina., Carrari F; Instituto de Fisiología Biología Molecular y Neurociencias (IFIBYNE-CONICET-UBA), Buenos Aires, Argentina; Facultad de Agronomía, Universidad de Buenos Aires, Argentina., Asis R; CIBICI, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina. Electronic address: rasis@fcq.unc.edu.ar. |
---|---|
Jazyk: | angličtina |
Zdroj: | Phytomedicine : international journal of phytotherapy and phytopharmacology [Phytomedicine] 2020 Jan; Vol. 66, pp. 153132. Date of Electronic Publication: 2019 Nov 04. |
DOI: | 10.1016/j.phymed.2019.153132 |
Abstrakt: | Background: Chlorogenic acid (CGA) is a polyphenol widely distributed in plants and plant-derived food with antioxidant and protective activities against cell stress. Caenorhabditis elegans is a model organism particularly useful for understanding the molecular and biochemical mechanisms associated with aging and stress in mammals. In C. elegans, CGA was shown to improve resistance to thermal, while the underlying mechanisms that lead to this effect require further understanding. Purpose: The present study was conducted to investigate the underlying molecular mechanisms behind CGA response conferring thermotolerance to C. elegans. Methods and Results: Signaling pathways that could be involved in the CGA-induced thermotolerance were evaluated in C. elegans strains with loss-of-function mutation. CGA-induced thermotolerance required hypoxia-inducible factor HIF-1 but no insulin pathway. CGA exposition (1.4 µM CGA for 18 h) before thermal stress treatment increased HIF-1 levels and activity. HIF-1 activation could be partly attributed to an increase in radical oxygen species and a decrease in superoxide dismutase activity. In addition, CGA exposition before thermal stress also increased autophagy just as hormetic heat condition (HHC), worms incubated at 36 °C for 1 h. RNAi experiments evidenced that autophagy was increased by CGA via HIF-1, heat-shock transcription factor HSF-1 and heat-shock protein HSP-16 and HSP-70. In contrast, autophagy induced by HHC only required HSF-1 and HSP-70. Moreover, suppression of autophagy induction showed the significance of this process for adapting C. elegans to cope with thermal stress. Conclusion: This study demonstrates that CGA-induced thermotolerance in C. elegans is mediated by HIF-1 and downstream, by HSF-1, HSPs and autophagy resembling HHC. (Copyright © 2019 Elsevier GmbH. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |