Light transmission and internal scattering in pulsed laser-etched partially-transparent silicon wafers.
Autor: | Rohaizar MH; Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia., Sepeai S; Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia., Surhada N; Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia., Ludin NA; Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia., Ibrahim MA; Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia., Sopian K; Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia., Zaidi SH; Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia. |
---|---|
Jazyk: | angličtina |
Zdroj: | Heliyon [Heliyon] 2019 Nov 20; Vol. 5 (11), pp. e02790. Date of Electronic Publication: 2019 Nov 20 (Print Publication: 2019). |
DOI: | 10.1016/j.heliyon.2019.e02790 |
Abstrakt: | Continuing trend in silicon wafer thickness directed at cost reduction approaches basic boundaries created by: (a) mismatch between Al paste and Si wafer thermal expansion and (b) incomplete optical absorption. With its symmetrical front and back electrical contacts, the bifacial solar cell setup reduces stress due to mismatch thermal expansion, decreases metal use and increases high temperature efficiency. Efficiency improvement is accomplished in bifacial solar cells by capturing light from the back surface. Partially transparent wafers provide an option to improve near-infrared radiation absorption within Si wafer. To fully absorb optical radiation, three-dimensional texture of these kinds of wafers is essential. Pulsed laser interactions, thermal oxidation, and wet chemical etching are included in this research. A feature of its energy and pattern setup is the interaction of pulsed laser with Si, running at 1.064 μm wavelength and micro-second length. Two experimental settings were explored: (a) post-laser chemical etching with potassium hydro-oxide etching with thermal oxide as etching mask and (b) post-laser heat Si surface oxidation. Due to fast melting and recrystallization, laser pulsed processing inherently produces its own texture. Some of these spherically-shaped, randomly focused characteristics improve inner scattering and boost near-infrared absorption within the wafer. These characteristics are separated during chemical etching with the thermally-grown oxide layer as an etch mask. Comparison of optical absorption in both surfaces shows almost a rise in the magnitude of absorption in non-etched surfaces. Detailed optical (optical microscope and IR absorption), morphological (field emission scanning electron microscope) and heat imaging (far IR camera) analyses were performed to comprehend physical processes that contribute to near-IR absorption improvement. Such kinds of partially-transparent, three-dimensional textured Si wafers are anticipated to discover applications for bifacial solar cells as substrates. (© 2019 The Authors.) |
Databáze: | MEDLINE |
Externí odkaz: |