Abstrakt: |
Cottonseeds contain protein with desirable food functional and nutritional properties. Storage globulins make up most of the protein stored in cottonseed and can be separated into five fractions by gel filtration chromatography. Each fraction is distinguishable from the other by its amino acid and polyacrylamide gel electrophoretic properties. Proteins of cottonseed contribute greatly to the functional properties of emulsions, co-isolates, and texturized derivatives. For example, increasing the amount of high protein cottonseed flour in wheat suspensions from 2% to 10% improved the capacity (54-97 ml of oil) and viscosity (5,000-100,000+ cps) of emulsions. The 10% suspension formed emulsions with increasing oil capacity (84-100 ml) and viscosity (28,000-100,000+ cps) as the pH was adjusted from 4.5 to 9.5. Consistencies of the products ranged from that of salad dressing (low percent suspensions, or acid pH) to that of mayonnaise (high percent, or basic pH). These data were utilized to derive a multiple regression model to predict optimum use of cottonseed proteins in emulsions of varying consistencies. A coprecipitated isolate containing greater than 94% protein was prepared from a blend of cottonseed and peanut flours. Amino acid content of the co-isolate reflected that of the protein in the two flours of the composite. The co-isolate has lower gossypol level and improved color and functional properties than a cottonseed protein isolate. Storage protein isolate of cottonseed suspended in aqueous solution and heated with constant stirring forms a texturized product; the quality of the product depends on heat, pH, salt, and the quantity of nonstorage proteins. Protein and amino acid content of meat products were improved by the addition of the texturized protein of cottonseed. |