High-performance subambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogel.

Autor: Leroy A; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA., Bhatia B; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA., Kelsall CC; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA., Castillejo-Cuberos A; Centro de Energía, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile.; Departamento de Ingeniería Mecánica y Metalúrgica, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile., Di Capua H M; Centro de Energía, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile.; Departamento de Ingeniería Mecánica y Metalúrgica, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile.; Micro and Nanofluidics Laboratory for Life Sciences, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile., Zhao L; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA., Zhang L; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA., Guzman AM; Centro de Energía, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile.; Departamento de Ingeniería Mecánica y Metalúrgica, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile.; Micro and Nanofluidics Laboratory for Life Sciences, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago, Chile., Wang EN; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Jazyk: angličtina
Zdroj: Science advances [Sci Adv] 2019 Oct 30; Vol. 5 (10), pp. eaat9480. Date of Electronic Publication: 2019 Oct 30 (Print Publication: 2019).
DOI: 10.1126/sciadv.aat9480
Abstrakt: Recent progress in passive radiative cooling technologies has substantially improved cooling performance under direct sunlight. Yet, experimental demonstrations of daytime radiative cooling still severely underperform in comparison with the theoretical potential due to considerable solar absorption and poor thermal insulation at the emitter. In this work, we developed polyethylene aerogel (PEA)-a solar-reflecting (92.2% solar weighted reflectance at 6 mm thick), infrared-transparent (79.9% transmittance between 8 and 13 μm at 6 mm thick), and low-thermal-conductivity ( k PEA = 28 mW/mK) material that can be integrated with existing emitters to address these challenges. Using an experimental setup that includes the custom-fabricated PEA, we demonstrate a daytime ambient temperature cooling power of 96 W/m 2 and passive cooling up to 13°C below ambient temperature around solar noon. This work could greatly improve the performance of existing passive radiative coolers for air conditioning and portable refrigeration applications.
(Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).)
Databáze: MEDLINE