Biodegradable π-Conjugated Oligomer Nanoparticles with High Photothermal Conversion Efficiency for Cancer Theranostics.

Autor: Li X; Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon 999077 , Hong Kong, P.R. China., Liu L; Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , No. 11, First North Road , Zhongguancun, Beijing 100190 , P.R. China., Li S; Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon 999077 , Hong Kong, P.R. China., Wan Y; Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon 999077 , Hong Kong, P.R. China., Chen JX; Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon 999077 , Hong Kong, P.R. China.; Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices , Soochow University , 199 Ren'ai Road , Suzhou , Jiangsu 215123 , P.R. China., Tian S; Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon 999077 , Hong Kong, P.R. China., Huang Z; Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon 999077 , Hong Kong, P.R. China., Xiao YF; Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon 999077 , Hong Kong, P.R. China., Cui X; Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon 999077 , Hong Kong, P.R. China., Xiang C; Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital , Guangzhou Medical University , Guangzhou 510260 , P.R. China., Tan Q; Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital , Guangzhou Medical University , Guangzhou 510260 , P.R. China., Zhang XH; Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices , Soochow University , 199 Ren'ai Road , Suzhou , Jiangsu 215123 , P.R. China., Guo W; Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital , Guangzhou Medical University , Guangzhou 510260 , P.R. China., Liang XJ; Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , No. 11, First North Road , Zhongguancun, Beijing 100190 , P.R. China., Lee CS; Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon 999077 , Hong Kong, P.R. China.
Jazyk: angličtina
Zdroj: ACS nano [ACS Nano] 2019 Nov 26; Vol. 13 (11), pp. 12901-12911. Date of Electronic Publication: 2019 Nov 11.
DOI: 10.1021/acsnano.9b05383
Abstrakt: We developed a biodegradable photothermal therapeutic (PTT) agent, π-conjugated oligomer nanoparticles (F8-PEG NPs), for highly efficient cancer theranostics. By exploiting an oligomer with excellent near-infrared (NIR) absorption, the nanoparticles show a high photothermal conversion efficiency (PCE) up to 82%, surpassing those of reported inorganic and organic PTT agents. In addition, the oligomer nanoparticles show excellent photostability and good biodegradability. The F8-PEG NPs are also demonstrated to have excellent biosafety and PTT efficacy both in vitro and in vivo . This contribution not only proposes a promising oligomer-based PTT agent but also provides insight into developing highly efficient nanomaterials for cancer theranostics.
Databáze: MEDLINE