Autor: |
Pogrebnjak AD; Sumy State University , 2, Rimsky Korsakov Str. , 40007 Sumy , Ukraine.; East Kazakhstan State Technical University , 69 A.K. Protozanov Street , 070004 Ust-Kamenogorsk City , The Republic of Kazakhstan., Kong CH; Mark Wainwright Analytical Centre , University of New South Wales , Sydney , NSW 2052 , Australia., Webster RF; Mark Wainwright Analytical Centre , University of New South Wales , Sydney , NSW 2052 , Australia., Tilley RD; Mark Wainwright Analytical Centre , University of New South Wales , Sydney , NSW 2052 , Australia., Takeda Y; National Institute for Material Science (NIMS) , 3-13 Sakura , Ibaraki prefecture 305-0003 , Japan., Oyoshi K; National Institute for Material Science (NIMS) , 3-13 Sakura , Ibaraki prefecture 305-0003 , Japan., Bondar OV; Sumy State University , 2, Rimsky Korsakov Str. , 40007 Sumy , Ukraine., Buranich VV; Sumy State University , 2, Rimsky Korsakov Str. , 40007 Sumy , Ukraine., Konstantinov SV; Sevchenko Research Institute of Applied Physical Problems , Belarussian State University , Minsk 220045 , Belarus., Baimoldanova LS; East Kazakhstan State Technical University , 69 A.K. Protozanov Street , 070004 Ust-Kamenogorsk City , The Republic of Kazakhstan., Opielak M; Politechnika Lubelska , ul. Nadbystrzycka 38 D , 20-618 Lublin , Poland., Zukowski P; Politechnika Lubelska , ul. Nadbystrzycka 38 D , 20-618 Lublin , Poland., Konarski P; Tele and Radio Research Institute , 11, Ratuszowa st. , 03-450 Warsaw , Poland. |
Abstrakt: |
A multilayered nanocomposite designed for biomedical applications based on (TiAlSiY)N/CrN coating implanted by heavy Au - ions is studied. Ion irradiation produced formation in the upper-surface of local amorphous clusters. The obtained composite system was characterized by SEM-EDS, RBS, SIMS, HRTEM, STEM, and nanoindentation mechanical tests, inspecting microstructure, phase state, elemental composition and surface defectiveness. The range of ion impact with correlation to TRIM simulations amounted to 23.5 nm with visible dislocations and interstitial loops indicating the nanopores' creation up/lengthways to the interface boundary. Mechanical parameters remain stable with a slight decrease (less than 2%) in hardness along with an increase in ductility. The antibacterial effect was evaluated in vitro by agar-diffusion and time-kill (72 h) assessments to define both cell-killing mechanisms: dry surface-contact and cytotoxic golden ions-release into moist environment. The identified antibacterial activity within implantation was 2-2.5 times higher due to inhibition zone diameter and antibacterial rate increase. The Au - implanted composite exhibits excellent defense against Gram-negative and Gram-positive bacteria without appreciable surface contamination. Possible biophysical and chemical mechanisms of microorganisms' disruption and annihilation were proposed and analyzed. The present study shows that produced composite has large potential for use in biomedical areas. |