Sound-driven single-electron transfer in a circuit of coupled quantum rails.

Autor: Takada S; Université Grenoble Alpes, CNRS, Institut Néel, 38000, Grenoble, France.; National Institute of Advanced Industrial Science and Technology (AIST), National Metrology Institute of Japan (NMIJ), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8563, Japan., Edlbauer H; Université Grenoble Alpes, CNRS, Institut Néel, 38000, Grenoble, France., Lepage HV; Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK., Wang J; Université Grenoble Alpes, CNRS, Institut Néel, 38000, Grenoble, France., Mortemousque PA; Université Grenoble Alpes, CNRS, Institut Néel, 38000, Grenoble, France., Georgiou G; Université Grenoble Alpes, CNRS, Institut Néel, 38000, Grenoble, France.; Université Savoie Mont-Blanc, CNRS, IMEP-LAHC, 73370, Le Bourget du Lac, France., Barnes CHW; Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK., Ford CJB; Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK., Yuan M; Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117, Berlin, Germany., Santos PV; Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117, Berlin, Germany., Waintal X; Université Grenoble Alpes, CEA, IRIG-Pheliqs, 38000, Grenoble, France., Ludwig A; Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, Universitätsstraße 150, 44780, Bochum, Germany., Wieck AD; Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, Universitätsstraße 150, 44780, Bochum, Germany., Urdampilleta M; Université Grenoble Alpes, CNRS, Institut Néel, 38000, Grenoble, France., Meunier T; Université Grenoble Alpes, CNRS, Institut Néel, 38000, Grenoble, France., Bäuerle C; Université Grenoble Alpes, CNRS, Institut Néel, 38000, Grenoble, France. christopher.bauerle@neel.cnrs.fr.
Jazyk: angličtina
Zdroj: Nature communications [Nat Commun] 2019 Oct 08; Vol. 10 (1), pp. 4557. Date of Electronic Publication: 2019 Oct 08.
DOI: 10.1038/s41467-019-12514-w
Abstrakt: Surface acoustic waves (SAWs) strongly modulate the shallow electric potential in piezoelectric materials. In semiconductor heterostructures such as GaAs/AlGaAs, SAWs can thus be employed to transfer individual electrons between distant quantum dots. This transfer mechanism makes SAW technologies a promising candidate to convey quantum information through a circuit of quantum logic gates. Here we present two essential building blocks of such a SAW-driven quantum circuit. First, we implement a directional coupler allowing to partition a flying electron arbitrarily into two paths of transportation. Second, we demonstrate a triggered single-electron source enabling synchronisation of the SAW-driven sending process. Exceeding a single-shot transfer efficiency of 99%, we show that a SAW-driven integrated circuit is feasible with single electrons on a large scale. Our results pave the way to perform quantum logic operations with flying electron qubits.
Databáze: MEDLINE