Antibody responses against the vaccine antigens Ov-103 and Ov-RAL-2 are associated with protective immunity to Onchocerca volvulus infection in both mice and humans.
Autor: | George PJ; Laboratory of Molecular Parasitology, Lindsley F Kimball Research Institute, New York Blood Center, New York, New York, United States of America., Hess JA; Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America., Jain S; Laboratory of Molecular Parasitology, Lindsley F Kimball Research Institute, New York Blood Center, New York, New York, United States of America., Patton JB; Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America., Zhan T; Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America., Tricoche N; Laboratory of Molecular Parasitology, Lindsley F Kimball Research Institute, New York Blood Center, New York, New York, United States of America., Zhan B; Texas Children's Hospital Center for Vaccine Development, Departments of Pediatric Tropical Medicine and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America., Bottazzi ME; Texas Children's Hospital Center for Vaccine Development, Departments of Pediatric Tropical Medicine and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America., Hotez PJ; Texas Children's Hospital Center for Vaccine Development, Departments of Pediatric Tropical Medicine and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America., Abraham D; Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America., Lustigman S; Laboratory of Molecular Parasitology, Lindsley F Kimball Research Institute, New York Blood Center, New York, New York, United States of America. |
---|---|
Jazyk: | angličtina |
Zdroj: | PLoS neglected tropical diseases [PLoS Negl Trop Dis] 2019 Sep 16; Vol. 13 (9), pp. e0007730. Date of Electronic Publication: 2019 Sep 16 (Print Publication: 2019). |
DOI: | 10.1371/journal.pntd.0007730 |
Abstrakt: | Background: The current strategy for the elimination of onchocerciasis is based on annual or bi-annual mass drug administration with ivermectin. However, due to several limiting factors there is a growing concern that elimination of onchocerciasis cannot be achieved solely through the current strategy. Additional tools are critically needed including a prophylactic vaccine. Presently Ov-103 and Ov-RAL-2 are the most promising vaccine candidates against an Onchocerca volvulus infection. Methodology/principal Findings: Protection induced by immunization of mice with the alum-adjuvanted Ov-103 or Ov-RAL-2 vaccines appeared to be antibody dependent since AID-/- mice that could not mount antigen-specific IgG antibody responses were not protected from an Onchocerca volvulus challenge. To determine a possible association between antigen-specific antibody responses and anti-larvae protective immunity in humans, we analyzed the presence of anti-Ov-103 and anti-Ov-RAL-2 cytophilic antibody responses (IgG1 and IgG3) in individuals classified as putatively immune, and in infected individuals who developed concomitant immunity with age. It was determined that 86% of putatively immune individuals and 95% individuals with concomitant immunity had elevated IgG1 and IgG3 responses to Ov-103 and Ov-RAL-2. Based on the elevated chemokine levels associated with protection in the Ov-103 or Ov-RAL-2 immunized mice, the profile of these chemokines was also analyzed in putatively immune and infected individuals; both groups contained significantly higher levels of KC, IP-10, MCP-1 and MIP-1β in comparison to normal human sera. Moreover, human monospecific anti-Ov-103 antibodies but not anti-Ov-RAL-2 significantly inhibited the molting of third-stage larvae (L3) in vitro by 46% in the presence of naïve human neutrophils, while both anti-Ov-103 and anti-Ov-RAL-2 antibodies significantly inhibited the molting by 70-80% when cultured in the presence of naive human monocytes. Interestingly, inhibition of molting by Ov-103 antibodies and monocytes was only in part dependent on contact with the cells, while inhibition of molting with Ov-RAL-2 antibodies was completely dependent on contact with the monocytes. In comparison, significant levels of parasite killing in Ov-103 and Ov-RAL-2 vaccinated mice only occurred when cells enter the parasite microenvironment. Taken together, antibodies to Ov-103 and Ov-RAL-2 and cells are required for protection in mice as well as for the development of immunity in humans. Conclusions/significance: Alum-adjuvanted Ov-103 and Ov-RAL-2 vaccines have the potential of reducing infection and thus morbidity associated with onchocerciasis in humans. The development of cytophilic antibodies, that function in antibody-dependent cellular cytotoxicity, is essential for a successful prophylactic vaccine against this infection. Competing Interests: The authors have declared that no competing interests exist. |
Databáze: | MEDLINE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |