Why be serious about emetic Bacillus cereus: Cereulide production and industrial challenges.
Autor: | Rouzeau-Szynalski K; Nestlé Research, Nestec Ltd, Vers-Chez-les-Blanc, 1000, Lausanne 26, Switzerland., Stollewerk K; Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria., Messelhäusser U; Bavarian Health and Food Safety Authority, Veterinaerstr. 2, 85764, Oberschleissheim, Germany., Ehling-Schulz M; Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria. Electronic address: monika.ehling-schulz@vetmeduni.ac.at. |
---|---|
Jazyk: | angličtina |
Zdroj: | Food microbiology [Food Microbiol] 2020 Feb; Vol. 85, pp. 103279. Date of Electronic Publication: 2019 Jul 26. |
DOI: | 10.1016/j.fm.2019.103279 |
Abstrakt: | Cereulide, a potent toxin produced by Bacillus cereus, is a small, highly heat- and acid-resistant depsipeptide toxin, which confronts food industry with several challenges. Due to the ubiquitous presence of B. cereus in the environment, this opportunistic pathogen can enter food production and processing at almost any stage. Although the bacteria itself might be removed during food processing, the cereulide toxin will most likely not be destroyed or inactivated by these processes. Because of the high toxicity of cereulide and the high incidence rates often observed in connection with foodborne outbreaks, the understanding of the mechanisms of toxin production as well as accurate data on contamination sources and factors promoting toxin formation are urgently needed to prevent contamination and toxin production in food production processes. Over the last decade, considerable progress had been made on the understanding of cereulide toxin biosynthesis in emetic B. cereus, but an overview of current knowledge on this toxin with regards to food industry perspective is lacking. Thus, we aim in this work to summarize data available on extrinsic parameters acting on cereulide toxin synthesis in emetic B. cereus and to discuss the food industry specific challenges related to this toxin. Furthermore, we emphasize how identification of the cardinals in food production processes can lead to novel effective strategies for prevention of toxin formation in the food processing chain and could contribute to the improvement of existing HACCP studies. (Copyright © 2019 Elsevier Ltd. All rights reserved.) |
Databáze: | MEDLINE |
Externí odkaz: |