Iron-sulfur cluster ISD11 deficiency ( LYRM4 gene) presenting as cardiorespiratory arrest and 3-methylglutaconic aciduria.

Autor: Coelho MP; Reference Center for Metabolic Disorders Centro Hospitalar Universitário do Porto Porto Portugal., Correia J; Reference Center for Metabolic Disorders Centro Hospitalar Universitário do Porto Porto Portugal., Dias A; Newborn Screening, Metabolism and Genetics Unit, Human Genetics Department National Institute of Health Doutor Ricardo Jorge Lisboa Portugal., Nogueira C; Newborn Screening, Metabolism and Genetics Unit, Human Genetics Department National Institute of Health Doutor Ricardo Jorge Lisboa Portugal., Bandeira A; Reference Center for Metabolic Disorders Centro Hospitalar Universitário do Porto Porto Portugal., Martins E; Reference Center for Metabolic Disorders Centro Hospitalar Universitário do Porto Porto Portugal., Vilarinho L; Newborn Screening, Metabolism and Genetics Unit, Human Genetics Department National Institute of Health Doutor Ricardo Jorge Lisboa Portugal.
Jazyk: angličtina
Zdroj: JIMD reports [JIMD Rep] 2019 Jul 24; Vol. 49 (1), pp. 11-16. Date of Electronic Publication: 2019 Jul 24 (Print Publication: 2019).
DOI: 10.1002/jmd2.12058
Abstrakt: In the era of genomics, the number of genes linked to mitochondrial disease has been quickly growing, producing massive knowledge on mitochondrial biochemistry. LYRM4 gene codifies for ISD11, a small protein (11 kDa) acting as an iron-sulfur cluster, that has been recently confirmed as a disease-causing gene for mitochondrial disorders. We present a 4-year-old girl patient, born from non-consanguineous healthy parents, with two episodes of cardiorespiratory arrest after respiratory viral illness with progressive decreased activity and lethargy, at the age of 2 and 3 years. She was asymptomatic between crisis with regular growth and normal development. During acute events of illness, she had hyperlactacidemia (maximum lactate 5.2 mmol/L) and urinary excretion of ketone bodies and 3-methylglutaconic acid, which are normalized after recovery. A Next Generation Sequence approach with a broad gene panel designed for mitochondrial disorders revealed a novel probably pathogenic variant in homozygosity in the LYRM4 gene [p.Tyr31Cys (c.92A>G)] with Mendelian segregation. Functional studies in the skeletal muscle confirmed a combined deficiency of the mitochondrial respiratory chain (I, II, and IV complexes). To our knowledge, this is the third case of LYRM4 deficiency worldwide and the first with 3-methylglutaconic aciduria, not reported in any Fe-S cluster deficiency. Remarkably, it appears to be no neurological involvement so far, only with life-threating acute crisis triggered by expectably benign autolimited illnesses. Respiratory chain cofactors and chaperones are a new field of knowledge and can play a remarkable effect in system homeostasis.
Competing Interests: The authors declare that they have no conflict of interest.
Databáze: MEDLINE