Autor: |
Rifai EA; AIMMS Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands., van Dijk M; AIMMS Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands., Vermeulen NPE; AIMMS Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands., Yanuar A; Faculty of Pharmacy , Universitas Indonesia , Depok 16424 , Indonesia., Geerke DP; AIMMS Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , The Netherlands. |
Abstrakt: |
Binding free energy (Δ G bind ) computation can play an important role in prioritizing compounds to be evaluated experimentally on their affinity for target proteins, yet fast and accurate Δ G bind calculation remains an elusive task. In this study, we compare the performance of two popular end-point methods, i.e., linear interaction energy (LIE) and molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA), with respect to their ability to correlate calculated binding affinities of 27 thieno[3,2-d]pyrimidine-6-carboxamide-derived sirtuin 1 (SIRT1) inhibitors with experimental data. Compared with the standard single-trajectory setup of MM/PBSA, our study elucidates that LIE allows to obtain direct ("absolute") values for SIRT1 binding free energies with lower compute requirements, while the accuracy in calculating relative values for Δ G bind is comparable (Pearson's r = 0.72 and 0.64 for LIE and MM/PBSA, respectively). We also investigate the potential of combining multiple docking poses in iterative LIE models and find that Boltzmann-like weighting of outcomes of simulations starting from different poses can retrieve appropriate binding orientations. In addition, we find that in this particular case study the LIE and MM/PBSA models can be optimized by neglecting the contributions from electrostatic and polar interactions to the Δ G bind calculations. |