Arabidopsis mtHSC70-1 plays important roles in the establishment of COX-dependent respiration and redox homeostasis.
Autor: | Wei SS; Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China., Niu WT; Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China.; College of Biological Science and Engineering, Xingtai University, Xingtai, China., Zhai XT; Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China., Liang WQ; Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China., Xu M; Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China., Fan X; Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China., Lv TT; Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China., Xu WY; Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China., Bai JT; Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China., Jia N; Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China.; National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China., Li B; Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China. |
---|---|
Jazyk: | angličtina |
Zdroj: | Journal of experimental botany [J Exp Bot] 2019 Oct 24; Vol. 70 (20), pp. 5575-5590. |
DOI: | 10.1093/jxb/erz357 |
Abstrakt: | The 70 kDa heat shock proteins function as molecular chaperones and are involved in diverse cellular processes. However, the functions of the plant mitochondrial HSP70s (mtHSC70s) remain unclear. Severe growth defects were observed in the Arabidopsis thaliana mtHSC70-1 knockout lines, mthsc70-1a and mthsc70-1b. Conversely, the introduction of the mtHSC70-1 gene into the mthsc70-1a background fully reversed the phenotypes, indicating that mtHSC70-1 is essential for plant growth. The loss of mtHSC70-1 functions resulted in abnormal mitochondria and alterations to respiration because of an inhibition of the cytochrome c oxidase (COX) pathway and the activation of the alternative respiratory pathway. Defects in COX assembly were observed in the mtHSC70-1 knockout lines, leading to decreased COX activity. The mtHSC70-1 knockout plants have increased levels of reactive oxygen species (ROS). The introduction of the Mn-superoxide dismutase 1 (MSD1) or the catalase 1 (CAT1) gene into the mthsc70-1a plants decreased ROS levels, reduced the expression of alternative oxidase, and partially rescued growth. Taken together, our data suggest that mtHSC70-1 plays important roles in the establishment of COX-dependent respiration. (© The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.) |
Databáze: | MEDLINE |
Externí odkaz: |