Physical Expansion of Layered Graphene Oxide Nanosheets by Chemical Vapor Deposition of Metal-Organic Frameworks and their Thermal Conversion into Nitrogen-Doped Porous Carbons for Supercapacitor Applications.

Autor: Amer WA; International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.; Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt., Wang J; International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan., Ding B; International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.; Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies, College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China., Li T; International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan., Allah AE; International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.; Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt., Zakaria MB; International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.; Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt., Henzie J; International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan., Yamauchi Y; School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.; Department of Plant and Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 446-701, South Korea.
Jazyk: angličtina
Zdroj: ChemSusChem [ChemSusChem] 2020 Mar 20; Vol. 13 (6), pp. 1629-1636. Date of Electronic Publication: 2019 Aug 28.
DOI: 10.1002/cssc.201901436
Abstrakt: Graphene oxide (GO) nanosheets show good electrical conductivity and corrosion resistance in electrochemical devices. However, strong van der Waals attraction between adjacent nanosheets causes GO materials to collapse, reducing the exposed surfaces and limiting electron/ion transport in porous electrodes. GO nanosheets mixed with Zn 5 (OH) 8 (NO 3 ) 2 ⋅2 H 2 O (ZnON) nanoplates create a layered composite structure. Exposing the resultant GO/ZnON to 2-methylimidazole vapor leads to the conversion of ZnON into the zeolitic imidazolate framework ZIF-8. The transformation of ZnON into ZIF-8 leads to a huge physical expansion of the interlayer space between the GO sheets. Annealing the material at high temperature caused the ZIF-8 to be converted into highly porous nitrogen-doped carbon, but the GO nanosheets maintained a large separation and high surface area. The morphology and porous structure of the post-annealing carbon material was sensitive to the initial ratio of ZnON to GO. The optimized sample exhibited several favorable features, including a large surface area, high degree of graphitization, and a high amount of nitrogen doping. Using chemical vapor deposition of metal-organic frameworks to physically expand nanomaterials is a novel method to increase the surface area and porosity of materials. It enabled the synthesis of nanoporous carbon electrodes with high capacitance, good rate capability, and long cyclic stability in supercapacitor devices.
(© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.)
Databáze: MEDLINE