Microfluidic Chips for Life Sciences-A Comparison of Low Entry Manufacturing Technologies.

Autor: Grösche M; Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany., Zoheir AE; Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany., Stegmaier J; RWTH Aachen University, Institute of Imaging and Computer Vision, Kopernikusstraße 16, 52074, Aachen, Germany., Mikut R; Karlsruhe Institute of Technology (KIT), Institute for Automation and Applied Informatics (IAI), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany., Mager D; Karlsruhe Institute of Technology (KIT), Institute of Microstructure Technology (IMT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany., Korvink JG; Karlsruhe Institute of Technology (KIT), Institute of Microstructure Technology (IMT), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany., Rabe KS; Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany., Niemeyer CM; Karlsruhe Institute of Technology (KIT), Institute for Biological Interfaces (IBG 1), Hermann-von-Helmholtz-Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany.
Jazyk: angličtina
Zdroj: Small (Weinheim an der Bergstrasse, Germany) [Small] 2019 Aug; Vol. 15 (35), pp. e1901956. Date of Electronic Publication: 2019 Jul 15.
DOI: 10.1002/smll.201901956
Abstrakt: Microfluidic water-in-oil droplets are a versatile tool for biological and biochemical applications due to the advantages of extremely small monodisperse reaction vessels in the pL-nL range. A key factor for the successful dissemination of this technology to life science laboratory users is the ability to produce microfluidic droplet generators and related accessories by low-entry barrier methods, which enable rapid prototyping and manufacturing of devices with low instrument and material costs. The direct, experimental side-by-side comparison of three commonly used additive manufacturing (AM) methods, namely fused deposition modeling (FDM), inkjet printing (InkJ), and stereolithography (SLA), is reported. As a benchmark, micromilling (MM) is used as an established method. To demonstrate which of these methods can be easily applied by the non-expert to realize applications in topical fields of biochemistry and microbiology, the methods are evaluated with regard to their limits for the minimum structure resolution in all three spatial directions. The suitability of functional SLA and MM chips to replace classic SU-8 prototypes is demonstrated on the basis of representative application cases.
(© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.)
Databáze: MEDLINE