Autor: |
Cheng CY, Dangi A, Ren L, Tiwari S, Benoit RR, Qiu Y, Lay HS, Agrawal S, Pratap R, Kothapalli SR, Mallouk TE, Cochran S, Trolier-Mckinstry S |
Jazyk: |
angličtina |
Zdroj: |
IEEE transactions on ultrasonics, ferroelectrics, and frequency control [IEEE Trans Ultrason Ferroelectr Freq Control] 2019 Oct; Vol. 66 (10), pp. 1606-1615. Date of Electronic Publication: 2019 Jul 02. |
DOI: |
10.1109/TUFFC.2019.2926211 |
Abstrakt: |
Lead zirconate titanate (PZT)-based piezoelectric micromachined ultrasonic transducers (PMUTs) for particle manipulation applications were designed, fabricated, characterized, and tested. The PMUTs had a diaphragm diameter of 60 [Formula: see text], a resonant frequency of ~8 MHz, and an operational bandwidth (BW) of 62.5%. Acoustic pressure output in water was 9.5 kPa at 7.5 mm distance from a PMUT element excited with a unipolar waveform at 5 V pp . The element consisted of 20 diaphragms connected electrically in parallel. Particle trapping of 4 [Formula: see text] silica beads was shown to be possible with 5 V pp unipolar excitation. Trapping of multiple beads by a single element and deterministic control of particles via acoustophoresis without the assistance of microfluidic flow were demonstrated. It was found that the particles move toward diaphragm areas of highest pressure, in agreement with literature and simulations. Unique bead patterns were generated at different driving frequencies and were formed at frequencies up to 60 MHz, much higher than the operational BW. Levitation planes were generated above the 30 MHz driving frequency. |
Databáze: |
MEDLINE |
Externí odkaz: |
|