The effect of high-fat diet on the morphological properties of the forelimb musculature in hypertrophic myostatin null mice.

Autor: Elashry MI; Anatomy and Embryology Department, Faculty of Veterinary Medicine, University of Mansoura, Mansoura, Egypt.; Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, Giessen, Germany., Eldaey A; Anatomy and Embryology Department, Faculty of Veterinary Medicine, University of Mansoura, Mansoura, Egypt.; Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, Giessen, Germany., Glenske K; Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, Giessen, Germany., Matsakas A; Molecular Physiology Laboratory, Centre for Atherothrombotic and Metabolic Disease, Hull York Medical School, University of Hull, Hull, UK., Wenisch S; Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, Giessen, Germany., Arnhold S; Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, Giessen, Germany., Patel K; School of Biological Sciences, University of Reading, Reading, UK.
Jazyk: angličtina
Zdroj: Journal of anatomy [J Anat] 2019 Oct; Vol. 235 (4), pp. 825-835. Date of Electronic Publication: 2019 Jun 14.
DOI: 10.1111/joa.13025
Abstrakt: Obesity is a worldwide nutritional disorder affecting body performance, including skeletal muscle. Inhibition of myostatin not only increases the muscle mass but also it reduces body fat accumulation. We examined the effect of high-fat diet on the phenotypic properties of forelimb muscles from myostatin null mice. Male wild-type and myostatin null mice were fed on either a normal diet or a high-fat diet (45% fat) for 10 weeks. Musculus triceps brachii Caput longum; M. triceps brachii Caput laterale; M. triceps brachii Caput mediale; M. extensor carpi ulnaris and M. flexor carpi ulnaris were processed for fiber type composition using immunohistochemistry and morphometric analysis. Although the muscle mass revealed no change under a high-fat diet, there were morphometric alterations in the absence of myostatin. We show that high-fat diet reduces the cross-sectional area of the fast (IIB and IIX) fibers in M. triceps brachii Caput longum and M. triceps brachii Caput laterale of both genotypes. In contrast, increases of fast fiber areas were observed in both M. extensor carpi ulnaris of wild-type and M. flexor carpi ulnaris of myostatin null mice. Meanwhile, a high-fat diet increased the area of the fast IIA fibers in wild-type mice; myostatin null mice display a muscle-dependent alteration in the area of the same fiber type. The combined high-fat diet and myostatin deletion shows no effect on the area of slow type I fibers. Although a high-fat diet causes a reduction in the area of the peripheral IIB fibers in both genotypes, only myostatin null mice show an increase in the area of the central IIB fibers. We provide evidence that a high-fat diet induces a muscle-dependent fast to slow myofiber shift in the absence of myostatin. The data suggest that the morphological alterations of muscle fibers under a combined high-fat diet and myostatin deletion reflect a functional adaptation of the muscle to utilize the high energy intake.
(© 2019 Anatomical Society.)
Databáze: MEDLINE