Effects of Lactobacillus Plantarum and Lactobacillus Helveticus on Renal Insulin Signaling, Inflammatory Markers, and Glucose Transporters in High-Fructose-Fed Rats.

Autor: Korkmaz OA; Department of Chemistry, Faculty of Science, Yildiz Technical University, Istanbul, 34220, Turkey. omeradilk@gmail.com., Sumlu E; Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, 06330, Turkey. esrasmlu@gmail.com., Koca HB; Department of Medical Biochemistry, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, 03200 Turkey. hbkoca@yahoo.com., Pektas MB; Department of Medical Pharmacology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, 03200 Turkey. mbpektas@gmail.com., Kocabas A; Department of Biology, K.Ö. Science Faculty, Karamanoglu Mehmetbey University, Karaman, 70000 Turkey. aytackocabas@kmu.edu.tr., Sadi G; Department of Biology, K.Ö. Science Faculty, Karamanoglu Mehmetbey University, Karaman, 70000 Turkey. sadi@kmu.edu.tr., Akar F; Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, 06330, Turkey. fakar@gazi.edu.tr.
Jazyk: angličtina
Zdroj: Medicina (Kaunas, Lithuania) [Medicina (Kaunas)] 2019 May 24; Vol. 55 (5). Date of Electronic Publication: 2019 May 24.
DOI: 10.3390/medicina55050207
Abstrakt: Background and Objectives: The excess consumption of fructose in the diet may cause metabolic syndrome, which is associated with an increased risk of kidney disease. There is limited data on probiotic treatment in high-fructose-induced metabolic syndrome. The present study aims to investigate whether the supplementation of Lactobacillus plantarum (L. plantarum) and Lactobacillus helveticus ( L. helveticus) could provide an improving effect on the renal insulin signaling effectors, inflammatory parameters, and glucose transporters in fructose-fed rats. Materials and Methods: The model of metabolic syndrome in male Wistar rats was produced by fructose, which was given as 20% solution in drinking water for 15 weeks. L. plantarum and L. helveticus supplementations were given by gastric gavage from 10 to 15 weeks of age. Results: High-fructose consumption in rats reduced renal protein expressions of insulin receptor substrate (IRS)-1, protein kinase B (AKT), and endothelial nitric oxide synthase (eNOS), which were improved by L. plantarum and partially by L. helveticus supplementations. Dietary fructose-induced elevations in renal tissue levels of tumor necrosis factor α (TNF-α), interleukin (IL)-1β, IL-6, and IL-10, as well as expression of IL-6 mRNA, were attenuated, especially in L. plantarum treated rats. The increased renal expression of sodium-glucose cotransporter-2 (SGLT2), but not that of glucose transporter type-5 (GLUT5), was suppressed by the treatment with L. plantarum . Conclusion: Suppression in insulin signaling pathway together with the induction of inflammatory markers and upregulation of SGLT2 in fructose-fed rats were improved by L. plantarum supplementation. These findings may offer a new approach to the management of renal dysregulation induced by dietary high-fructose.
Databáze: MEDLINE